首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Future atmospheric CO2 levels will most likely have complex consequences for marine organisms, particulary photosynthetic calcifying organisms. Corallina officinalis L. is an erect calcifying macroalga found in the inter- and subtidal regions of temperate rocky coastlines and provides important substrate and refugia for marine meiofauna. The main goal of the current study was to determine the physiological responses of C. officinalis to increased CO2 concentrations expected to occur within the next century and beyond. Our results show that growth and production of inorganic material decreased under high CO2 levels, while carbonic anhydrase activity was stimulated and negatively correlated to algal inorganic content. Photosynthetic efficiency based on oxygen evolution was also negatively affected by increased CO2. The results of this study indicate that C. officinalis may become less competitive under future CO2 levels, which could result in structural changes in future temperate intertidal communities.  相似文献   

2.
Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2-exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 μm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 μm. Interestingly, the incorporation of non-acid-soluble organic matrix (chitin) in the cuttlebones of CO2-exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 ] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.  相似文献   

3.
Ocean acidification and global warming are occurring concomitantly, yet few studies have investigated how organisms will respond to increases in both temperature and CO2. Intertidal microcosms were used to examine growth, shell mineralogy and survival of two intertidal barnacle post-larvae, Semibalanus balanoides and Elminius modestus, at two temperatures (14 and 19°C) and two CO2 concentrations (380 and 1,000 ppm), fed with a mixed diatom-flagellate diet at 15,000 cells ml−1 with flow rate of 10 ml−1 min−1. Control growth rates, using operculum diameter, were 14 ± 8 μm day−1 and 6 ± 2 μm day−1 for S. balanoides and E. modestus, respectively. Subtle, but significant decreases in E. modestus growth rate were observed in high CO2 but there were no impacts on shell calcium content and survival by either elevated temperature or CO2. S. balanoides exhibited no clear alterations in growth rate but did show a large reduction in shell calcium content and survival under elevated temperature and CO2. These results suggest that a decrease by 0.4 pH(NBS) units alone would not be sufficient to directly impact the survival of barnacles during the first month post-settlement. However, in conjunction with a 4–5°C increase in temperature, it appears that significant changes to the biology of these organisms will ensue.  相似文献   

4.
The hydrothermal vent vestimentiferans Riftia pachyptila Jones, 1981 and Ridgeia piscesae Jones, 1985 live in habitats with different abundances of external CO2. R. pachyptila is found in areas with a high input of hydrothermal fluid, and therefore with a high [CO2]. R. piscesae is found in a range of habitats with low to high levels of hydrothermal fluid input, with a correspondingly broad range of CO2 concentrations. We examined the strategies for dissolved inorganic carbon (DIC) use by the symbionts from these two species. R. pachyptila were collected from the East Pacific Rise (9°50′N; 104°20′W) in March 1996, and R. piscesae were collected from the Juan de Fuca Ridge (47°57′N; 129°07′W) during September of 1996 and 1997. The differences in the hosts' habitats were reflected by the internal pools of DIC in these organisms. The concentrations of DIC in coelomic fluid from R. piscesae were 3.1 to 10.5 mM, lower than those previously reported for R. pachyptila, which often exceed 30 mM. When symbionts from both hosts were incubated at in situ pressures, their carbon fixation rates increased with the extracellular concentration of CO2, and not HCO3 , and symbionts from R. piscesae had a higher affinity for CO2 than those from R. pachyptila (K 1/2 of 7.6 μM versus 49 μM). Transmission electron micrographs showed that symbionts from R. piscesae lack carboxysomes, irrespective of the coelomic fluid [DIC] of their host. This suggests that the higher affinity for CO2 of R. piscesae symbionts may be their sole means of compensating for lower DIC concentrations. The δ13C values of tissues from R. piscesae with higher [DIC] in the coelomic fluid were more positive, opposite to the trend previously described for other autotrophs. Factors which may contribute to this trend are discussed. Received: 24 September 1998 / Accepted: 12 May 1999  相似文献   

5.
Ocean acidification (OA) and the biological consequences of altered seawater chemistry have emerged as a significant environmental threat to healthy marine ecosystems. Because a more acidic ocean interferes with fixation of calcium carbonate to form shells or calcified skeletons, future ocean chemistry may significantly alter the physiology of calcifying marine organisms. These alterations may manifest themselves directly in the calcification process, or have synergistic effects with other environmental factors such as elevated temperatures. New tools permit us to explore subtle changes in gene expression patterns in response to environmental conditions. We raised sea urchins (Strongylocentrotus franciscanus) under conditions simulating future atmospheric CO2 levels of 540 and 970 ppm. When larvae raised under elevated CO2 conditions were subjected to 1-h acute temperature stress, their ability to mount a physiological response (as measured by expression of the molecular chaperone hsp70) was reduced relative to those raised under ambient CO2 conditions. These results represent the first use of gene expression assays to study the effects of OA on sea urchin development. They highlight the importance of looking at multiple environmental factors simultaneously as this approach may reveal previously unsuspected biological impacts of atmospheric changes.  相似文献   

6.
Ocean sequestration of CO2 is proposed as a possible measure to mitigate environmental changes due to the increasing atmospheric concentration of the gas. However, toxic effects of CO2 on marine organisms are poorly understood. We therefore studied acid–base responses and mortality during exposure to fatal levels of CO2 in three marine fishes (Japanese flounder, Paralichthys olivaceus; yellowtail, Seriola quinqueradiata; and starspotted dogfish, Mustelus manazo). The teleosts died during exposure to seawater equilibrated with a gas mixture containing 5% CO2 (water PCO2 4.95 kPa); 100% mortality occurred within 8 h for yellowtail and within 48 h for flounder. Only 20% mortality was recorded at 72 h for the dogfish during exposure to 7% CO2 (water PCO2 6.96 kPa). Arterial pH (pHa) initially decreased, but completely recovered within 1–24 h for the teleosts at 1% and 3%, although the recovery was slower and complete only at 1% (water PCO2 0.99 kPa) for the dogfish. During exposure to 5%, the flounder died after the pHa had been completely restored, suggesting that the mortality was not due to plasma acidosis. During exposure to 1% hypercapnia, plasma [Cl] appeared to be the main counter ion to balance increases in plasma [HCO3-]. There was a 1:1 stoichiometry for the rise in [HCO3-] and the fall in [Cl] for the teleosts, whereas the ratio was 1:0.4 for the dogfish at 1% CO2. At the higher levels of hypercapnia, the rise in [HCO3-] consistently exceeded the fall in [Cl], and plasma [Na+] significantly increased.These results do not agree with the generally accepted model for acid–base regulation in marine fish in which Na+/H+ exchangers are assumed to play a predominant role, and indicate that an acid–base regulatory mechanism differs between teleost and elasmobranch fishes, as well as the intensity of acidic stress.Communicated by T. Ikeda, Hakodate  相似文献   

7.
The relationship between various experimental concentrations of CO2 and calcification in Bossiella orbigniana (Decaisne) was studied by measuring Ca-45 incorporation into the crystalline matrix. Air containing CO2 at partial pressures (PCO 2) of 0.04 to 5.5% was bubbled through synthetic seawater in incubation vessels. The resultant pH values in the presence of plants ranged from 6.5 to 8.7. The maximum calcification rate appears to lie between 0.11 and 1.05% PCO 2. The data suggest that calcification is controlled by a biological process that may be sensitive to pH and/or to the relative bicarbonate concentration. The data also suggest that a severalfold increase in CO2 over the present atmospheric level might lead to increased calcification in this marine alga.  相似文献   

8.
Marine organisms are exposed to increasingly acidic oceans, as a result of equilibration of surface ocean water with rising atmospheric CO2 concentrations. In this study, we examined the physiological response of Mytilus edulis from the Baltic Sea, grown for 2 months at 4 seawater pCO2 levels (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 μatm). Shell and somatic growth, calcification, oxygen consumption and \textNH4 + {\text{NH}}_{4}^{ + } excretion rates were measured in order to test the hypothesis whether exposure to elevated seawater pCO2 is causally related to metabolic depression. During the experimental period, mussel shell mass and shell-free dry mass (SFDM) increased at least by a factor of two and three, respectively. However, shell length and shell mass growth decreased linearly with increasing pCO2 by 6–20 and 10–34%, while SFDM growth was not significantly affected by hypercapnia. We observed a parabolic change in routine metabolic rates with increasing pCO2 and the highest rates (+60%) at 243 Pa. \textNH4 + {\text{NH}}_{4}^{ + } excretion rose linearly with increasing pCO2. Decreased O:N ratios at the highest seawater pCO2 indicate enhanced protein metabolism which may contribute to intracellular pH regulation. We suggest that reduced shell growth under severe acidification is not caused by (global) metabolic depression but is potentially due to synergistic effects of increased cellular energy demand and nitrogen loss.  相似文献   

9.
Climate change driven ocean acidification and hypercapnia may have a negative impact on fertilization in marine organisms because of the narcotic effect these stressors exert on sperm. In contrast, warmer, less viscous water may have a positive influence on sperm swimming speed and so ocean warming may enhance fertilization. To address questions on future vulnerabilities we examined the interactive effects of near-future ocean warming and ocean acidification/hypercapnia on fertilization in intertidal and shallow subtidal echinoids (Heliocidaris erythrogramma, H. tuberculata, Tripneustes gratilla, Centrostephanus rodgersii), an asteroid (Patiriella regularis) and an abalone (Haliotis coccoradiata). Batches of eggs from multiple females were fertilized by sperm from multiple males in all combinations of three temperature and three \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} treatments. Experiments were placed in the setting of projected near-future conditions for southeast Australia, an ocean change hot spot. There was no significant effect of warming and acidification on the percentage of fertilization. These results indicate that fertilization in these species is robust to temperature and \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} fluctuation. This may reflect adaptation to the marked fluctuation in temperature and pH that characterises their shallow water coastal habitats. Efforts to identify potential impacts of ocean change to the life histories of coastal marine invertebrates are best to focus on more vulnerable embryonic and larval stages because of their long time in the water column where seawater chemistry and temperature have a major impact on development.  相似文献   

10.
Coral diseases are one of the major factors that alter coral cover and their diversity. We have earlier reported the “Pink-line syndrome” (PLS) in the scleractinian coral Porites lutea wherein a colored band appears between the dead and healthy tissue of a colony. About 20% of the P. lutea colonies were affected in Kavaratti of the Lakshadweep Islands in the Arabian Sea during April 1996 and the incidence increased fourfold within the next 4 years. Fungi were associated in both PLS-affected and healthy specimens, whereas the cyanobacterium Phormidium valderianum occurred exclusively in the PLS-affected specimens. There was an increased expression of a 29 kDa protein without any significant increase in total protein content in the PLS-affected colonies. A reduced number of zooxanthellae and an increase in zooxanthellae size, mitotic index, and chl a concentrations were some of the characteristics of the PLS-affected colonies. PLS induction experiments conducted using selected fungi and the cyanobacterium P. valderianum isolated from the affected colonies and abiotic factors, such as CO2 enrichment and the effect of cyanobacterial photosynthesis inhibition, indicated that the CO2 build-up around the host tissue caused the pink coloration. We hypothesize that these physiological changes disturb the mutualism between the zooxanthellae and the host. When the symbiosis is disturbed by the external CO2, the host loses control over the zooxanthellae, causing their uncontrolled division. This process may lead to a break in photosynthate transfer to the host, thereby resulting in starvation and finally leading to partial mortality. We further hypothesize that these degenerative processes are triggered by the CO2 produced by P. valderianum through its carbon concentration mechanism. In this context, any opportunistic cyanobacteria or other agents having potential to interfere with the physiology of the host or the symbiont can cause such a physiological disorder. The mechanism of PLS formation is an early warning to protect corals as the increasing atmospheric CO2 could induce PLS-like physiological disorder in corals.  相似文献   

11.
A portable system for CO2 gas exchange measurements is described that allows determination of net photosynthesis and transpiration rates as well as leaf conductance of salt marsh vascular plants, and photosynthesis rates of macrophytic algae and epibenthic algae of sediment cores during low tide periods of exposure. Carbon fixation processes of these several different types of organisms can be studied on the same day. Measurements may be carried out at an estuarine field site using controlled conditions of light, temperature, and air CO2 partial pressure. Algal samples are enclosed in the cuvette for only a matter of minutes and do not dry significantly during measurement. The rapidity with which gas exchange rates of samples may be assessed will allow routine processing of many sediment cores. Thus, the distribution of producer populations can be studied with greater resolution than previously possible.  相似文献   

12.
A. Israel  S. Beer 《Marine Biology》1992,112(4):697-700
In this continuing study on photosynthesis of the marine red alga Gracilaria conferta, it was found that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in crude extracts had a K m (CO2) of 85 M. Since seawater contains only ca. 10 M CO2, it appears that this alga must possess a CO2 concetrating system in order to supply sufficient CO2 to the vicinity of the enzyme. Because this species is a C3 plant (and thus lacks the C4 system for concentrating CO2), but can utilize HCO3 - as an exogenous carbon source, we examined whether HCO3 - uptake could be the initial step of such a CO2 concetrating system. The surface pH of G. conferta thalli was 9.4 during photosynthesis. At this pH, estimated maximal uncatalyzed HCO3 - dehydration (CO2 formation) within the unstirred layer was too slow to account for measured phostosynthetic rates, even in the presence of an external carbonic anhydrase inhibitor. This observation, and the marked pH increase in the unstirred layer following the onset of light, suggests that a HCO3 - transport system (probably coupled to transmembrane H+/OH- fluxes) operates at the plasmalemma level. The involvement of surface-bound carbonic anhydrase in such a system remains, however, obscure. The apparent need of marine macroalgae such as G. conferta for CO2 concentrating mechanisms is discussed with regard to their low affinity of Rubisco to CO2 and the low rate of CO2 supply in water. The close similarity between rates of Rubisco carboxylation and measured photosynthesis further suggests that the carboxylase activity, rather than inorganic carbon transport and intercoversion events, could be an internal limiting factor for photosynthetic rates of G. conferta.  相似文献   

13.
The reversible capture of CO2 from fossil-fueled industries and the absorption of CO2 for natural-gas-sweetening purposes are industrial issues closely related to very important environmental, economical, and technological concerns. Biological amino acids can be used for task-specific ionic liquids for reversible CO2 capture. Several groups have reported efficient and reversible CO2 capture by such ionic liquids under rigorously dry conditions. However, we have observed that CO2 capture by amino acid ionic liquids is hugely impacted by the presence of water. In addition, the amino acid anions appear to play only a transitory role in the CO2 capture in the first minutes of exposure to a wet CO2 stream. Here, we studied the interaction of two ionic liquids—tetramethylammonium glycinate ([N1111][Gly]) and tetraethylammonium prolinate ([N2222][Pro])—with CO2 under wet conditions, by 13C-NMR. Results show that CO2 is initially captured in a carbamate form by the amine-functionalized anions of these salts. This capture mode is unambiguously confirmed by a single-crystal X-ray study of the CO2-ionic liquid complex. However, in solution, as additional CO2 is added, the carbamate releases the covalently bound CO2, and the CO2 remaining in solution shifts in form to an equilibrium mixture of carbonate and bicarbonate. Indeed, when the amount of CO2 present in the system exceeds about one-half mole per mole of ionic liquid present, the ionic liquid–carbamate complex is detected in only trace amounts, and the neutralized amino acids are readily identifiable by NMR.  相似文献   

14.
Experiments in which organisms are reared in treatments simulating current and future pCO2 concentrations are critical for ocean acidification (OA) research. The majority of OA exposure experiments use average atmospheric pCO2 levels as a baseline treatment. We conducted an ecoregion-scale analysis of global carbon chemistry datasets. For many locales, atmospheric pCO2 levels are not an appropriate characterization of marine carbon chemistry. We argue that atmospheric pCO2 should be disregarded when setting baseline treatment conditions and experimental design should rely on measurements of carbon chemistry in a study subject’s habitat. As carbon chemistry conditions vary with space and time, we suggest using a range of pCO2 values as a control rather than a single value. We illustrate this issue with data on the habitat of Euphausia pacifica, which currently lives in waters with a pCO2 around 900 μatm, a concentration much higher than the current global atmospheric mean.  相似文献   

15.
A model, PIXGRO, developed by coupling a canopy flux sub-model (PROXELNEE; PROcess-based piXEL Net Ecosystem CO2 Exchange) to a vegetation structure submodel (CGRO), for simulating both net ecosystem CO2 exchange (NEE) and growth of spring barley is described. PIXGRO is an extension of the stand-level CO2 and H2O-flux model PROXELNEE, that simulates the NEE on a process basis, but goes further to include the dry matter production, partitioning, and crop development for spring barley. Dry matter partitioned to the leaf was converted to leaf area index (LAI) using relationships for the specific leaf area (SLA). The canopy flux component, PROXELNEE was calibrated using information from the literature on C3 plants and was tested using CO2 flux data from an eddy-covariance (EC) method in Finland with long-term observations. The growth component (CGRO) was calibrated using data from the literature on spring barley as well as data from the Finland site. It was then validated against field data from two sites in Germany and partly via the use of MODIS remotely sensed LAI from the Finland site.Both the diurnal and the seasonal patterns of gross CO2 uptake were very well simulated (R2 = 0.92). A slight seasonal bias may be attributed to leaf ageing. Crop growth was also well simulated; simulated dry matter agreed with field observed data from Germany (R2 = 0.90). For LAI, the agreement between the simulated and observed was good (R2 = 0.80), giving an indication that functions describing the conversion of fixed CO2 to dry matter and the subsequent partitioning leaf dry matter and LAI simulation were robust and provided reliable estimates.The MODIS LAI at a resolution of 1000 m agreed poorly (R2 = 0.45) with the PIXGRO simulated LAI and the observed LAI at the Finland site in 2001. We attributed this to the coarse resolution of the image and/or the small size of the barley field (about 17 ha or 0.25 km2) at the Finland site. By deriving a regression relation between the observed LAI and NDVI from a higher resolution MODIS (500 m resolution), the MODIS-recalculated LAI agreed better with the PIXGRO-simulated LAI (R2 = 0.86).PIXGRO provides a prototype model bridging the disciplines of plant physiology, crop modeling and remote sensing, for use in a spatial context in evaluating carbon balances and plant growth at stand level, landscape, regional, and with some care, continental scales. Since almost 50% of the European land surface is covered by crops, such a model is needed for the dynamic estimation of LAI and NEE of croplands.  相似文献   

16.
Rising dissolved pCO2 is a mounting threat to coral reef ecosystems. While the biological and physiological impacts of increased pCO2 are well documented for many hermatypic corals, the potential effects on bioerosion processes remain largely unknown. Increases in pCO2 are likely to modify the direct interactions between corals and bioeroders, such as excavating sponges, with broad implications for the balance between biologically mediated deposition and erosion of carbonate in reef communities. This study investigated the effects of three levels of CO2 (present-day, mid-century and end-of-century projections) on the direct interaction between a bioeroding sponge, Cliona varians, and a Caribbean coral, Porites furcata. Increased pCO2 concentrations had no effect on the attachment rates of C. varians to the corals, and we observed no significant impact of pCO2 on the survival of either the coral or sponges. However, exposure to end-of-century levels of CO2-dosing (~750 μatm) reduced calcification in P. furcata and led to a significant increase in sponge-mediated erosion of P. furcata. These findings demonstrate that pCO2 can enhance erosional efficiency without impacting survival or competitive vigor in these two species. While few studies have considered the influence of pCO2 on the competitive outcomes of interactions between corals and other reef organisms, our study suggests that assessing the impacts of changing pCO2 on species interactions is crucial to adequately predict ecosystem-level responses in the future.  相似文献   

17.
We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336–341 ppm, pH 8.09–8.15) to high levels (886–5,148 ppm) causing acidified conditions near the vents (pH 7.08–7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7.41–7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms.  相似文献   

18.
Intertidal macroalgae may spend a significant part of their lives in air. During photosynthesis in air, they encounter much lower concentrations of inorganic carbon than in seawater. Because they accumulate inorganic carbon from seawater, we investigated whether they similarly accumulate it from air. We measured photosynthesis in the intertidal species Fucus vesiculosus L. during 1990 and 1991 with a gas-phase O2 electrode or CO2-exchange apparatus in air and with a liquid-phase O2 electrode in seawater. Maximum rates were rapid and similar in air and seawater regardless of the method. Tissue from seawater could carry on photosynthesis in CO2-free air, indicating that carbon was stored in the tissue. After 2 h, this store was depleted and photosynthesis ceased. Supplying CO2 in air replenished the store. Under identical conditions, terrestrial C3 and C4 species showed no evidence of this store, but a CAM (crassulacean acid metabolism) species did. However, in contrast to the CAM behavior, F. vesiculosus did not store CO2 significantly in the dark. We found a small acid-releasable pool of carbon in the tissue that disappeared as photosynthesis depleted the carbon store. However, the pool was too small to account for the total carbon stored. While CO2 was being acquired or released from the store in the light, photosynthesis was not inhibited by 21% O2. These results indicate that there are two parallel paths for the supply of CO2 to photosynthesis. The first depends on inorganic carbon in seawater or in air and supports rapid photosynthesis. The second involves CO2 slowly released from an organic intermediate. The release protects CO2 fixation from the inhibitory effects of 21% O2. Photosynthesis in F. vesiculosus thus appears to be C3-like in its rapid fixation of CO2 from a small inorganic pool into phosphoglycerate. However, it is C4-like in its pre-fixation of carbon in an organic pool in the light, and is CAM-like in its ability to slowly use this pool as a sole source of CO2. The organic pool may serve to protect photosynthetic CO2 fixation against the inhibitory effects of O2 in air and in the boundary layer in seawater. Received: 6 March 1998 / Accepted: 16 October 1998  相似文献   

19.
Future ocean acidification will be amplified by hypoxia in coastal habitats   总被引:1,自引:0,他引:1  
Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.  相似文献   

20.
二氧化碳捕集与封存技术(CO_2 capture and storage, CCS)是当前国际上公认的CO_2减排的有效措施,但封存在地下的CO_2仍然因为各种不稳定因素存在泄漏风险,对土壤环境及土壤生态系统产生威胁。选择赤子爱胜蚓为研究对象,通过模拟高浓度CO_2对蚯蚓形态与生理变化的影响,探究CCS泄漏所产生的土壤高浓度CO_2对蚯蚓的毒性效应。研究表明,土壤高浓度CO_2使蚯蚓出现生殖环带肿大、尾部串珠以及断尾等外部形态变化,皮肤和刚毛受到损伤并且表皮发生褶皱等现象;随着CO_2浓度的增加以及暴露时间的延长,蚯蚓的死亡率不断增加,土壤高浓度CO_2对蚯蚓的7 d和14 d半致死浓度分别为26.39%和17.78%;蚯蚓体腔细胞溶酶体中性红保留时间(NRRT)减少。因此,蚯蚓有望作为监测CO_2泄漏的指示生物,NRRT可作为识别CO_2泄漏的敏感指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号