首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in four size fractions (<2, 2–20, 20–200, >200 μm) in soils at different depth from a heavily contaminated crude benzol production facility of a coking plant were determined using GC–MS. Vertically, elevated total PAHs concentrations were observed in the soils at 3.0–4.5 m (layer B) and 6.0–7.5 m (layer C), relatively lower at 1.5–3.0 m (layer A) and 10.5–12.0 m (layer D). At all sampling sites, the silt (2–20 μm) contained the highest PAHs concentration (ranged from 726 to 2,711 mg/kg). Despite the substantial change in PAHs concentrations in soils with different particle sizes and lithologies, PAHs composition was similarly dominated by 2–3 ring species (86.5–98.3 %), including acenaphthene, fluorene, and phenanthrene. For the contribution of PAHs mass in each fraction to the bulk soil, the 20–200 μm size fraction had the greatest accumulation of PAHs in loamy sand layers at 1.0–7.5 m, increasing with depth; while in deeper sand layer at 10.5–12.0 m, the >200 μm size fraction showed highest percentages and contributed 81 % of total PAHs mass. For individual PAH distribution, the 2–3 ring PAHs were highly concentrated in the small size fraction (<2 and 2–20 μm); the 4–6 ring PAHs showed the highest concentrations in the 2–20 μm size fraction, increasing with depth. The distribution of PAHs was primarily determined by the sorption on soil organic matter and the characteristics of PAHs. This research should have significant contribution to PAH migration study and remediation design for PAHs-contaminated sites.  相似文献   

2.
为了探讨微生物修复不同类型多环芳烃污染土壤的可行性,应用固定化毛霉对多环芳烃污染工业土壤及农田土壤进行微生物修复,用羟丙基-β-环糊精(HPCD)提取模拟评价多环芳烃的微生物可利用性,并分析多环芳烃微生物降解和生物可利用性的相关关系.焦化厂污染土壤中多环芳烃的30 d降解率为77.6%,沈抚灌区污染土壤中多环芳烃的30 d降解率为54.2%,焦化厂土壤和污灌区农田土壤中多环芳烃降解差异明显.焦化厂土壤和污灌区土壤中多环芳烃的30 d降解量和多环芳烃的环糊精可提取量具有相关性,各环数多环芳烃的环糊精可提取量变化解释了焦化厂和污灌区土壤中多环芳烃降解的差异机制,说明可用环糊精提取量预测微生物降解土壤多环芳烃的情况.  相似文献   

3.
The results of lysimeter experiments conducted since 1991 dealing with the behavior of PAH in soil/plant systems demonstrate that the PAH pollution to cultivated plants may be caused by both atmospheric deposition and by the soil-to-plant transfer observed in contaminated sites. In the latter, a “direct contamination” of plant surfaces with PAH-loaded soil particles and the subsequent PAH turnover by desorption/adsorption processes is seen to dominate—at least for the most relevant PAHs toxic to humans, benzo(a)pyrene and dibenz(a,h)anthracene. Leafy vegetables growing close to the soil surface are therefore endangered most by a PAH contamination of the soil. The soil-to-plant transfer via “direct contamination” can be reduced to a high degree by covering the contaminated soil with different mulch materials. Systematic PAH transfer via root uptake could not generally be observed. From the reported results, a trigger value in the soil of 1 mg·kg?1 for benzo(a)pyrene is proposed to make a judgement on PAH contaminated soils with regard to the soil-to-plant transfer pathways. Soils with excessive concentrations of benzo(a)pyrene demand special attention when considering the recommendations for the growth and consumption of cultivated vegetables. The “soil”as well as the “deposition pathways” must be integrated into a complete risk assessment of locations with food plant production, especially in urban areas.  相似文献   

4.
Vertical distribution of both the concentration and composition of polycyclic aromatic hydrocarbons (PAHs) in ten profiles in Beijing has been investigated. The results showed that PAH concentrations and compositions in topsoil from different sampling sites were different. PAH concentrations were much higher in topsoil of the investigated urban area, industrial region, and paddy field with wastewater irrigation than in other areas. Moreover, PAH concentrations in topsoil were much higher than those at greater depth, where the concentrations were relatively consistent in most soil profiles. The fingerprints of PAHs in the samples from topsoil (0–30 cm) in the same profiles were similar and were obviously different from those at greater depth, suggesting that PAH sources were consistent in topsoil samples and were discriminating between topsoil and deeper soils. PAHs in topsoil mainly arose from mixed sources of combustion of liquid fuel, coal, and/or wood, as well as wastewater irrigation, while those at greater depth were derived from soil genesis and the process of soil formation.  相似文献   

5.
Polycyclic aromatic hydrocarbon (PAH) concentrations were determined in 16 topsoils (0–10 cm) collected across the site of a former tar works in NE England. The soils were prepared in the laboratory to two different particle size fractions: <250 μm (fraction A) and >250 μm to <2 mm (fraction B). Sixteen priority PAHs were analysed in the soils using in situ pressurised fluid extraction (PFE) followed by gas chromatography—mass spectrometry (GC–MS). The average total PAH concentration in the soils ranged from 9.0 to 1,404 mg/kg (soil fraction A) and from 6.6 to 872 mg/kg (soil fraction B). These concentrations are high compared with other industrially contaminated soils reported in the international literature, indicating that the tar works warrants further investigation/remediation. A predominance of higher-molecular-weight compounds was determined in the samples, suggesting that the PAHs were of pyrogenic (anthropogenic) origin. Statistical comparison (t-test) of the mean total PAH concentrations in soil fractions A and B indicated that there was a significant difference (95% confidence interval) between the fractions in all but two of the soil samples. Additionally, comparisons of the distributions of individual PAHs (i.e. 16 PAHs × 16 soil samples) in soil fractions A and B demonstrated generally higher PAH concentrations in fraction A (i.e. 65.8% of all individual PAH concentrations were higher in soil fraction A). This is important because fraction A corresponds to the particle size thought to be most important in terms of human contact with soils and potential threats to human health.  相似文献   

6.
系统采集了环渤海北部沿海地区31个表层土壤样品,利用GC/MS分析了16种USEPA优控多环芳烃(PAHs)的含量和组分特征,运用主成分因子载荷法揭示了其污染来源,并初步评价了其风险水平.结果表明,沿海地区65%的土壤已被污染,最高污染样点PAHs含量达920.4ng·g-1,平均含量309.5ng·g-1,与国内外相关研究比较,处于中低等污染水平.各类燃料的不完全燃烧是该地区土壤中PAHs的主要来源,石油类挥发或泄漏对采油区土壤中PAHs的累积影响显著.  相似文献   

7.
应用脂肪酸甲酯淋洗去除土壤中多环芳烃   总被引:4,自引:2,他引:4  
针对煤气厂土壤等高浓度多环芳烃污染土壤修复困难的现实,采用易生物降解的新型淋洗剂脂肪酸甲酯淋洗修复高浓度多环芳烃污染的土壤,同时进行了以甲醇、植物油(大豆油)作为淋洗剂的淋洗实验,比较不同淋洗剂的淋洗效果.结果证明脂肪酸甲酯对人工模拟污染土壤中蒽、荧蒽、芘、苯并(a)芘的去除率可以达到80%—95%,对煤气厂土壤中多环芳烃的去除效果也非常明显,总多环芳烃的去除率达到41%.脂肪酸甲酯的淋洗效果要优于其它两种淋洗剂.  相似文献   

8.
Dissipation and plant uptake of polycyclic aromatic hydrocarbons (PAHs) in contaminated agricultural soil planted with perennial ryegrass were investigated in a field experiment. After two seasons of grass cultivation the mean concentration of 12 PAHs in soil decreased by 23.4% compared with the initial soil. The 3-, 4-, 5-, and 6-ring PAHs were dissipated by 30.9%, 25.5%, 21.2%, and 16.3% from the soil, respectively. Ryegrass shoots accumulated about 280 μg·kg-1, shoot dry matter biomass reached 2.48 × 104 kg·ha-1, and plant uptake accounted for about 0.99% of the decrease in PAHs in the soil. Significantly higher soil enzyme activities and microbial community functional diversity were observed in planted soil than that in the unplanted control. The results suggest that planting ryegrass may promote the dissipation of PAHs in long-term contaminated agricultural soil, and plant-promoted microbial degradation may be a main mechanism of phytoremediation.  相似文献   

9.
Sea water and fish tissue samples were collected from nine sampling stations from the Great Bitter and El Temsah lakes in the Suez Canal and analysed for polycyclic aromatic hydrocarbon (PAH). The compositions of PAH determined in the dissolved fraction of sea water were measured in order to use them as chemical markers for identifying different sources of PAH pollution in this region. PAHs determined in fish tissues were measured for comparison with human health standards as consumption. The total mean PAHs concentrations in the sea water samples ranged from 0.28 to 39.57 μg l?1 with an overall mean of 10.78 and 12.38 μg l?1 for El Temsah and Bitter Lakes water, respectively. Total PAHs fractions recorded in muscle tissues of all different Osteicthyes fishes collected from Great Bitter lakes ranged from 5.8 to 218.5 μg g?1 with an overall mean of 57.98 μg g?1 during all seasons. However, they ranged from 68 to 623 μg g?1 with an overall mean of 87.69 μg g?1 recorded in El Temsah lake during four seasons (2003–2004). Benzo(a)pyrene was the most dominant PAHs found in the sea water samples from both lakes with an average concentration of 3.8 μ g l?1. Dibenzo(a,h)anthracene (DBA) was the most dominant PAHs recorded in fish samples. A maximum of 533 μg g?1 of DBA was recorded in Dahbana sp. collected from Bitter lakes during January 2004. However, a maximum of 68.7 μ g g?1 was recorded in Liza carinata species collected from El Temsah lake during July, 2004. The simultaneous occurrence of isomer ratios PHE/ANT<10 for all stations indicated that the major PAH input to water was from combustion of fossil fuel (pyrolytic source). The average ratios were 1.21 and 12.9 during winter (January 2004) and 4.3 and 8.63 during spring (April 2004) for all water samples of Great Bitter lakes and El Temsah lake, respectively. In addition, the present data demonstrate that PAHs from fossil fuel sources (MW<178) were the least significant source of PAHs in this region.  相似文献   

10.
● Compositional patterns of PAHs in dust aerosol vary from soil during dust generation. ● The EF of PAH in dust aerosol is affected by soil texture and soil PAH concentration. ● The sizes of dust aerosol play an important role in the enrichment of HMW-PAHs. Polycyclic aromatic hydrocarbons (PAHs) are major organic pollutants in soil. It is known that they are released to the atmosphere by wind via dust aerosol generation. However, it remains unclear how these pollutants are transferred through the air/soil interface. In this study, dust aerosols were generated in the laboratory using soils (sandy loam and loam) with various physicochemical properties. The PAH concentrations of these soils and their generated dust aerosol were measured, showing that the enrichment factors (EFs) of PAHs were affected by soil texture, PAH contamination level, molecular weight of PAH species and aerosol sizes. The PAHs with higher EFs (6.24–123.35 in dust PM2.5; 7.02–47.65 in dust PM10) usually had high molecular weights with more than four aromatic rings. In addition, the positive correlation between EFs of PAHs and the total OCaerosol content of dust aerosol in different particle sizes was also statistically significant (r = 0.440, P < 0.05). This work provides insights into the relationship between atmospheric PAHs and the contaminated soils and the transfer process of PAHs through the soil-air interface.  相似文献   

11.
汕头经济特区土壤中优控多环芳烃的分布   总被引:16,自引:0,他引:16  
运用气相色谱-质谱方法对汕头经济特区131个土样中的美国EPA优控多环芳烃(PAHs)进行定性、定量测定,讨论了PAHs的分布特征。结果表明,该区表层土壤中优控PAHs的总质量分数范围从22.1 ng/g到1256.9 ng/g之间,平均质量分数为(317.3210.2) ng/g。其分布随采样点的位置不同而有显著变化:工业区附近多环芳烃的质量分数最高,城市中心次之,郊区最低。大多数样点中?PAHs质量分数和单种PAH质量分数都呈现w(5~20 cm)> w(0~5 cm)>w(20~40 cm)>w(40~100 cm)的垂直分布规律。该区土壤PAHs以3环和4环化合物为主,单种PAH以萘、菲和苯并[b]萤蒽为主。  相似文献   

12.
Rapid methods are needed to analyse air pollutants such as polycyclic aromatic hydrocarbons (PAHs). Reliable semi-quantitative gas standards were required for the development of a laser-induced fluorescence (LIF) method for polycyclic aromatic hydrocarbon analysis, based on sampling of air onto multi-channel polydimethylsiloxane rubber traps. Easily constructed diffusion tubes provided naphthalene vapour at ~2 ng s−1. A gas chromatographic fraction collection method for loading less volatile PAHs onto the traps from a flame ionization detector outlet was developed and optimized. The accuracy of the method, which can be further optimized, was sufficient for initial LIF screening tests to flag samples exceeding threshold PAH levels for subsequent quantitative GC–MS analysis.  相似文献   

13.
溢油事故发生后喷洒溢油分散剂是常用的应急措施之一,这使得溢油分散剂中的表面活性剂与石油中的重要污染物多环芳烃(PAHs)在海水中共存。光化学转化是水中PAHs的重要转化途径,这些共存表面活性剂如何影响PAHs在海水中的光化学消减还有待阐明。本研究选取溢油分散剂的重要活性成分吐温80和石油中2种不同类型的PAHs(菲和二苯并噻吩),通过光化学实验考察不同浓度吐温80对菲(PHE)和二苯并噻吩(DBT)在海水中的光降解速率常数和光解量子产率的影响,并通过量子化学计算的手段研究其影响机制。研究发现:吐温80可以使PHE和DBT的阳离子自由基回到稳定的基态,降低PHE和DBT的光解量子产率,从而抑制PHE和DBT的光降解。该结果表明,在评价溢油分散剂的风险性时不可忽视其对PAHs环境转化行为的影响。  相似文献   

14.
Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons (PAHs) from highly contaminated manufactured gas plant (MGP) and PAHs spiked soils with hydroxypropyl-β-cyclodextrin (HPCD) and tween 80 as comparisons. Biodiesel displayed the highest solubilities of phenanthrene (420.7 mg·L-1), pyrene (541.0 mg·L-1), and benzo(a)pyrene (436.3 mg·L-1). These corresponded to several fold increases relative to 10% HPCD and tween 80. Biodiesel showed a good efficiency for PAH removal from the spiked and MGP soils for both low molecular weight and high molecular weight PAHs at high concentrations. Biodiesel was the best agent for PAH removal from the spiked soils as compared with HPCD and tween 80; as over 77.9% of individual PAH were removed by biodiesel. Tween 80 also showed comparable capability with biodiesel for PAH solubilization at a concentration of 10% for the spiked soils. Biodiesel solubilized a wider range of PAHs as compared to HPCD and tween 80 for the MPG soils. At PAH concentrations of 229.6 and 996.9 mg·kg-1, biodiesel showed obvious advantage over the 10% HPCD and tween 80, because it removed higher than 80% of total PAH. In this study, a significant difference between PAH removals from the spiked and field MGP soils was observed; PAH removals from the MGP soil by HPCD and tween 80 were much lower than those from the spiked soil. These results demonstrate that the potential for utilizing biodiesel for remediation of highly PAH-contaminated soil has been established.  相似文献   

15.
Effect of hydroxypropyl-β-cyclodextrin (HPCD) on the bioavailability and biodegradation of the polycyclic aromatic hydrocarbons (PAHs) pyrene (PYR) and benzo[α]pyrene (BaP) in spiked soils was investigated in 14-week incubation experiments. To evaluate the effect of HPCD in soils with a different matrix, humic substance (HS) was added into soil samples. A 6-h Tenax TA extraction method was used to evaluate pollutants bioavailability. The biodegraded and extracted fractions were compared to evaluate the impact of HPCD on PAHs biodegradation. Results indicated positive effects of HPCD on fast desorption behaviours of PAHs. The biodegraded fraction was consistent with that of the extracted for PYR. However, in terms of BaP, the results were contrary which suggests that biological factors may be limiting factors for BaP pollution remediation. HS weakened the HPCD solubilisation effect while accelerated the decay of PYR and BaP, also implying that bioavailability was not the sole factor limiting PAH biodegradation. In addition, analysis of microbial communities demonstrated that HPCD inhibited the growth of some soil bacteria while HS promoted the evolution of some soil microorganisms. A limited population of hydrocarbon degrader populations led to observing incomplete PAH biodegradation even in the presence of HPCD.  相似文献   

16.
This investigation was conducted in an area of oil spill along the east coast of Thailand to examine the relations among cytochrome P450 1A activity in liver and PAHs in the bile of the tonguefish and petroleum hydrocarbons in the sediments. PAH sediment concentrations in the reference and oil spill areas were 5.03 +/- 0.42 and 0.21 +/- 0.043 microg(-1) dry weight respectively Cytochrome activity in fish liver from oil spill area was 45.40 +/- 3.50 pmoles/ min/mg protein, almost threefold higher than that from the reference sites. Flourescense detection in bile metabolites at the oil spill area, 69.8 +/- 9.9 flourescense unit was significantly higher than that at the reference sites, 22.9 +/- 5.5 and 22.2 +/- 3.5 fluorescence unit. A strong correlation was found among cytochrome P450 1A activity in liver, PAH of bile metabolites and petroleum hydrocarbons. Both cytochrome and bile metabolites activity decreased seaward varying to the distance from the oil polluted area. We concluded that both detections in tonguefish can be regarded as a complementary biomarkers for the exposure of PAHs in tropical marine environments.  相似文献   

17.
以北京市某废弃焦化厂为研究对象,系统采集了6个车间0~4m深的26个土壤样本,利用GC/MS检测了U.S.EPA优控的16种多环芳烃(PAHs)的含量,分析了PAHs在焦化厂不同车间表层土壤的污染状况和深层土壤中的垂直分布特征并对土壤污染风险进行了评估.结果表明,1)该废弃焦化厂不同车间表层土壤(0~20cm)总PAHs(∑PAHs)的残留量介于672.8~144814.3ng·g-1之间;污染程度排序为:回收车间>老粗苯车间>焦油车间>炼焦车间>水处理车间>制气车间.2)该厂未受扰动的土壤样品显示PAHs主要聚集在表层土壤,并随着土壤深度的增加而迅速减少;其他样点由于土壤扰动,∑PAHs含量最大值出现在第三层土壤(80~180cm);该厂4m深底层土壤仍有高浓度PAHs,∑PAHs含量最高值出现在炼焦车间,达12953.1ng·g-1.3)焦化厂土壤PAHs污染主要集中在3环和4环的PAHs单体上,分别占到污染总量的51.3%和31.7%.4)根据Maliszewska-Kordybach的PAHs总量标准及加拿大土壤PAHs单体治理标准,该厂回收、老粗苯、焦油和炼焦车间表层和深层土壤PAHs含量均达到重污染水平,并对其周围土地带来较大风险,需要治理.  相似文献   

18.
To work out background values, the information of concentration profiles of PAHs in soils of uncontaminated territories is indispensable. This investigation shows PAH concentrations of different soil samples like agricultural soils, grassland, forest and litter from the biosphere reserve in Spreewald, Germany. The mean values of the soil samples are about 460 μg Σ-PAK/kg d.m. A top value of 7.2 mg Σ-PAK/kg d.m. shows a sample of a flooded grassland area. The relation of the concentrations in the litter, forest, grassland and agricultural soil samples is about 5∶3∶2∶1. Compared to the other samples, the litter samples contain a higher amount of low molecular PAHs. Increasing distance to the former power plants Lübbenau and Vetschau (brown coal) lead to decreasing PAH contents in the soil samples of forests from 2190.9 after 4 km to 294.8 Σ-PAK/kg d.m. after 16 km. In comparison to results obtained in Nordrhein-Westfalen and Bayern, the PAH measurements indicate Spreewald to be an uncontaminated and rural area.  相似文献   

19.
北京城市道路积尘多环芳烃的粒度分布特征及其影响因素   总被引:3,自引:0,他引:3  
对北京城市不同道路类型的道路积尘进行了为期16个月的采样,分别分析了道路尘的粒径、多环芳烃及TOC.道路积尘的粒径呈三峰态分布,<75 μm部分的颗粒所占体积最大,>214 μm部分颗粒所占体积最小.>214 μm这部分颗粒中的多环芳烃质量分数最低,<75μm和75~214μm这两部分颗粒中多环芳烃的质量分数没有显著差异,但由于<75μm部分颗粒所占的体积和质量比例最大,这部分颗粒的多环芳烃累积量所占比例最高.不同道路的积尘粒径存在差异,海淀路和成府路机动车道的积尘颗粒相比自行车道和人行道的颗粒更粗.由于粒径分布的差异和多环芳烃质量分数的差异,不同类型道路的多环芳烃累积量的粒径分布呈现差异.多环芳烃质量分数和累积量的粒度分布也呈现季节差异,冬春季<75 μm颗粒中的多环芳烃质量分数最高,多环芳烃的累积量所占比例也较夏秋季高.在三个粒级中,TOC与多环芳烃质量分数均呈现显著的正相关.高比例的细颗粒及细颗粒中的多环芳烃使得道路积尘再悬浮进入大气以及随湿沉降进入地表径流的环境风险加大.  相似文献   

20.

This study presents a comprehensive characterization of occurrence and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in arable soils used for conventional and organic production in northern and central part of Serbia as well as cross-border region with Hungary. Furthermore, this study includes a characterization of PAH sources and carcinogenic/non-carcinogenic human health risk for PAHs accumulated in analysed arable soils. The total concentration of 16 PAHs varied between 55 and 4584 µg kg?1 in agricultural soil used for conventional production and between 90 and 523 µg kg?1 in agricultural soil used for organic production. High molecular weight (HMW) PAHs were dominant compounds with similar contribution in both soil types (86% and 80% in conventional and in organic soil, respectively). Principal component analysis and diagnostic ratios of selected PAHs were used for identification of PAH sources in the analysed soils. Additionally, positive matrix factorization was applied for quantitative assessment. The results indicated that the major sources of PAHs were vehicle emissions, biomass and wood combustion, accounting for?~?93% of PAHs. Exposure of farmers assessed through carcinogenic (TCR) and non-carcinogenic (THQ) risk did not exceed the acceptable threshold (TCR?<?10–6 and THQ?<?1). Oral ingestion was the main exposure route which accounted for 57% of TCR and 80% of THQ. It was followed by dermal contact. This investigation gives a valuable data insight into the PAHs presence in arable soils and reveals the absence of environmental and health risk. It also acknowledges the importance of comprehensive monitoring of these persistent pollutants.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号