首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial associations may influence the negative effects of potentially toxic elements on plants. In a greenhouse experiment, the growth; biochemical response; and Pb, Fe, and Zn uptake of Onopordum acanthium L. were investigated in response to inoculation with arbuscular mycorrhizal fungi, AMF (a mixture of Funneliformis mosseae, Rhizophagus irregularis, and Rhizophagus fasciculatus) and plant growth-promoting rhizobacteria, PGPR (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa) at increased Pb levels in soil. The treatments were arranged as a factorial experiment based on a randomised complete block design. Results revealed that inoculation with AMF and PGPR decreased Pb toxicity in plants. Inoculated plants with AMF and PGPR had higher shoot and root dry weight compared with the non-inoculated plants. In this study, AMF and PGPR inoculation led to a significant increase (P?≤?.05) in chlorophyll a, b, chlorophyll a+b, carotenoid, proline, and relative water content of plants. Furthermore, AMF and PGPR inoculation likely played a more important role in growth and Pb uptake in O. acanthium L. Our results suggest that AMF and Pseudomonas bacteria could be effective bio-inoculants for enhancing the plant growth and Pb uptake by inhibiting the adverse effects of Pb in O. acanthium.  相似文献   

2.
Four chromate tolerant rhizobacterial strains viz., RZB-01, RZB-02, RZB-03 and RZB-04 were isolated from rhizosphere of Scirpus lacustris collected from Cr-contaminated area. These strains characterized at morphological and biochemical levels. The most efficient chromate tolerant strain RZB-03 was inoculated to fresh plant of S. lacustris and grown in 2 microg ml(-1) and 5 microg ml(-1) of Cr+6 supplemented nutrient solution under controlled laboratory condition. The effects of rhizobacterial inoculation on growth and chromium accumulation in S. lacustris were evaluated. The inoculation of rhizobacteria increased biomass by 59 and 104%, while total chlorophyll content by 1.76 and 15.3% and protein content increased by 23 and 138% under 2 microg ml(-1) and 5 microg ml(-1) concentrations of Cr+6, respectively after 14 d as compared to non-inoculated plant. Similarly, the Cr accumulation also increased by 97 and 75% in shoot and 114 and 68% in root of inoculated plants as compared to non inoculated plants at 2 microg ml(-1) and 5 microg ml(-1) Cr+6 concentrations, respectively after 14 d. The chromate tolerant rhizobacteria which play an important role in chromium uptake and growth promotion in plant may be useful in development of microbes assisted phytoremediation system for decontamination of chromium polluted sites.  相似文献   

3.
A pot experiment was conducted to evaluate the potential effects of arbuscular mycorrhizal fungi (AMF) on growth, nutrient uptake, and inoculation effectiveness on Phragmites japonica. Spores of AMF strains (Gigaspora margarita Becker &; Hall) were collected from the commercial product ‘Serakinkon’. Four treatments, namely, natural soil (NS), natural soil inoculated by AM fungi, sterilised soil (SS) inoculated by AM fungi, and SS without AM fungi inoculation were selected to determine the effects of applied and indigenous AMF on P. japonica. The average colonisation level of P. japonica was 24–33%, whereas no colonisation was found in the SS. AMF colonisation increased the chlorophyll content (r?=?0.84, p?r?=?0.89, p?相似文献   

4.
Assisted phytoremediation has been widely used for decontamination of potentially toxic elements contaminated soils. A greenhouse experiment was conducted to evaluate the effectiveness of different microbial inoculations and surfactant levels on the phytoremediation of a Pb-polluted calcareous soil by maize. The results showed that application of surfactant increased both root and shoot dry matter yields. Microbial inoculations, however, had no significant effect on the root or shoot dry matter yield. Mean Pb uptake in maize root or shoot increased only following the application of some surfactant levels. Inoculation with microorganisms significantly increased both mean Pb concentration and uptake in maize root but not in maize shoot. Application of 4?mmol surfactant kg?1 along with inoculation with Priformospora indica was effective in increasing Pb phytostabilisation potential. While the application of 2?mmol surfactant kg?1 along with inoculation with Pseudomonas fluorescens was effective in increasing Pb phytoextraction potential. The fact that the values of translocation efficiencies were low in all treatments, demonstrated the low capability of maize for translocation of Pb from root to shoot. Inoculation with P. fluorescens was the most effective treatment in increasing metal micronutrient uptake. Microbial inoculation and surfactant levels enhanced Pb phytoremediation mostly through phytostabilisation of this metal by maize.  相似文献   

5.
White lupin plants were grown in hydroponics with 0, 90 and 180 µmol L?1 Pb(II) ethylenediaminetetraacetate complex for 30 days. Pb distribution (shoot/root ratio) was 0.34 and 0.46 for both Pb treatments. In the shoots, no decrease in biomass nor in photosynthetic pigment levels and no changes in the concentrations of malondialdehyde and glutathione were detected. In the roots, malondialdehyde increased by 20%, glutathione 2–3.6 times and phytochelatin concentrations 4–5 times. The high tolerance of white lupin makes it a valuable plant for phytoremediation of Pb-contaminated soil.  相似文献   

6.
丛枝菌根对土壤-植物系统中重金属迁移转化的影响   总被引:9,自引:0,他引:9  
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是一类在自然和农业生态系统中广泛存在并能与多数陆生植物形成共生关系的土壤真菌,在重金属污染土壤中对宿主植物的生长及吸收累积重金属具有重要影响,因而对污染土壤的生物修复具有潜在应用价值。以重金属从根际土壤进入植物并在植物体内再分配过程为主线,介绍丛枝菌根在这一过程中对重金属环境行为,特别是根际土壤中重金属赋存形态及植物吸收重金属的影响。最后,对丛枝菌根影响植物重金属耐性机制研究前沿和菌根修复技术的应用前景进行展望。  相似文献   

7.
A greenhouse pot experiment was conducted to investigate the effects of the colonization of arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the growth and metal uptake of three leguminous plants (Sesbania rostrata, Sesbania cannabina, Medicago sativa) grown in multi-metal contaminated soil. AMF colonization increased the growth of the legumes, indicating that AMF colonization increased the plant’s resistance to heavy metals. It also significantly stimulated the formation of root nodules and increased the N and P uptake of all of the tested leguminous plants, which might be one of the tolerance mechanisms conferred by AMF. Compared with the control, colonization by G. mosseae decreased the concentration of metals, such as Cu, in the shoots of the three legumes, indicating that the decreased heavy metals uptake and growth dilution were induced by AMF treatment, thereby reducing the heavy metal toxicity to the plants. The root/shoot ratios of Cu in the three legumes and Zn in M. sativa were significantly increased (P < 0.05) with AMF colonization, indicating that heavy metals were immobilized by the mycorrhiza and the heavy metal translocations to the shoot were decreased.  相似文献   

8.
Effects of cadmium on nutrient uptake and translocation by Indian Mustard   总被引:3,自引:0,他引:3  
Plants that hyperaccumulate metals are ideal subjects for studying the mechanisms of metal and mineral nutrient uptake in the plant kingdom. Indian Mustard (Brassica juncea) has been shown to accumulate moderate levels of Cd, Pb, Cr, Ni, Zn, and Cu. In this experiment, 10 levels of Cd concentration treatments were imposed by adding 10-190 mg Cd kg(-1) to the soils as cadmium nitrate [Cd(NO3)2]. The effect of Cd on phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the micronutrients iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in B. juncea was studied. Plant growth was affected negatively by Cd, root biomass decreased significantly at 170 mg Cd kg(-1) dry weight soils treatment. Cadmium accumulation both in shoots and roots increased with increasing soil Cd treatments. The highest concentration of Cd was up to 300 mg kg(-1) d.w. in the roots and 160 mg kg(-1) d.w. in the shoots. The nutrients mainly affected by Cd were P, K, Ca, Fe, and Zn in the roots, and P, K, Ca, and Cu in the shoots. K and P concentrations in roots increased significantly when Cd was added at 170 mg kg(-1), and this was almost the same level at which root growth was inhibited. Zn concentrations in roots decreased significantly when added Cd concentration was increased from 50 to 110 mg kg(-1), then remained constant with Cd treatments from 110 to 190 mg kg(-1). However, Zn concentrations in the shoots seemed less affected by Cd. It is possible that Zn uptake was affected by the Cd but not the translocation of Zn within the plant. Ca and Mg accumulation in roots and shoots showed similar trends. This result indicates that Ca and Mg uptake is a non-specific process.  相似文献   

9.
喀斯特地区土壤退化,植被定植更新困难,丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)具有增强植物养分吸收能力和抵抗逆境胁迫能力。研究喀斯特生境下植物与AMF共生效果,选择优势菌种促进喀斯特植被恢复,对于提高植物定植成活率具有重要作用。以豆科植物任豆(Zenia insignis)幼苗为试验材料,盆栽条件下,选取喀斯特优势菌种-摩西球囊霉(Funneliformis mosseae)、根内球囊霉(Rhizophagus intraradices),2种菌根真菌混合菌剂进行接种,培养180 d,研究贫瘠喀斯特土壤生境和养分较高的滇柏林下土壤生境下AMF对任豆生长影响。结果表明:摩西球囊霉、根内球囊霉和混合接种均能侵染任豆根系,幼嫩根系更易侵染,木质化根系侵染率下降。接种摩西球囊霉,贫瘠喀斯特土壤生境下,株高、地径、地上生物量、地下生物量和总生物量分别提高68.92%、56.18%、83.90%、42.20%和67.34%;养分较高的滇柏林下喀斯特土壤生境下,株高、地上生物量、地下生物量和总生物量分别提高48.05%、6.77%、7.92%和8.89%;根内球囊霉处理接种效应低于摩西球囊霉和混合接种处理,对生物量增长为负效应,混合接种处理接种效应介于单接种之间,摩西球囊霉接种效果优于根内球囊霉和混合接种。摩西球囊霉在贫瘠喀斯特土壤生境下发挥的促生效应优于养分较高的喀斯特土壤,可作为喀斯特侵蚀区植被恢复菌根真菌干扰途径的优势菌种,混合接种作为接种剂具有单接种兼容效应。  相似文献   

10.
The addition of EDTA in phytoextraction studies has been reported to increase heavy metal accumulation in above-ground parts or to have no negative impact on the overall (root/shoot) accumulation levels in terrestrial plants. At a purely quantitative level, this study assessed the phytoextraction potential of a previously untested high-biomass terrestrial plant, Symphytum officinale L. (comfrey), in the presence of Pb and EDTA. In this hydroponic-based study, we report a small increase in shoot accumulation of Pb with EDTA but, conversely, the presence of EDTA in the nutrient medium markedly reduced the overall quantity of Pb in the plant root by at least 80%. The loss does not appear to be explained by EDTA acting alone, increased transport of Pb to the shoots, or anionic charge repulsion of the [PbEDTA]2? complex. The elusive action and negative effect of EDTA on Pb accumulation in S. officinale provides additional reasons towards a growing trend away from the use of EDTA as a chelating agent in phytoextraction.  相似文献   

11.
Karst J  Marczak L  Jones MD  Turkington R 《Ecology》2008,89(4):1032-1042
Context dependency is deemed to position the outcomes of species interactions along a continuum of mutualism to parasitism. Thus, it is imperative to understand which factors determine where a particular interspecific interaction falls along the continuum. Over the past 20 years research on the ectomycorrhizal symbiosis has resulted in sufficient independent studies to now generalize about the factors and mechanisms that affect host response to ectomycorrhizas. Using meta-analysis we quantitatively evaluated the role of biotic (partner identity and colonization levels of ectomycorrhizal fungi) and abiotic (phosphorus levels) factors in determining host biomass, height, and shoot:root responses to ectomycorrhizal associations. On average, seedlings across multiple host genera increased in total biomass when inoculated with ectomycorrhizal fungi regardless of the identity of the fungal associate; host genera differed in the magnitude of response for both total biomass and shoot:root ratio. Association with different fungal genera modified only host allocation of biomass to shoots and roots. Neither level of colonization on inoculated seedlings nor the level of contamination on control seedlings relative to colonization levels by target fungi on inoculated seedlings was important in explaining variation in effect sizes for any growth response. None of our proposed factors (identity of partners, colonization level, magnitude of contamination, or duration of association) explained variation in effect sizes for shoot height, although in general seedlings were taller when inoculated with ectomycorrhizal fungi. Phosphorus additions did not influence effect sizes. Although the general trend across studies was for a positive response of hosts to ectomycorrhizal inoculation, publication bias and methodological issues effectively reduce and distort the spectrum on which we evaluate host responses to ectomycorrhizal inoculation. Our results indicate that the variation in ectomycorrhizal fungi perceived by the host may be of a discrete (presence/absence of ectomycorrhizal fungi) rather than continuous nature (variation in identity or abundance of ectomycorrhizal fungi).  相似文献   

12.
The effects of an arbuscular mycorrhizal fungi (AMF) association on the growth, survival capabilities, nutrients and lead (Pb) uptake of Miscanthus sacchariflorus under different Pb concentrations were studied in the form of pot cultures. The treatments comprised inoculation or non-inoculation of the AMF, Gigaspora margarita, and the addition of three Pb concentrations to the soil (0, 100 and 1000?mg?kg?1). The addition of Pb significantly decreased mycorrhizal colonisation. The inoculation of AMF with Pb increased chlorophyll content, Fv/Fm, total dry mass, indole-3-acetic acid (IAA), total nitrogen, and total phosphorus, whereas H2O2 level, indole-3-acetic acid oxidase (IAAO) activity, and peroxidase (POD) activity were low compared to those in the non-inoculated treatments. Moreover, the application of AMF together with Pb doses induces concentrations of Pb in the plant, where the higher dose of Pb (1000?mg?kg?1) induces a lower content of Pb in the aerial part of the plant but a higher content in the root. G. margarita enhanced the tolerance of M. sacchariflorus against Pb toxicity, and facilitated the accumulation of Pb in the plant roots, whereas translocation to the shoots was inhibited at the highest dose Pb (1000?mg?kg?1). However, in contaminated soil, the Pb removal capability of M. sacchariflorus with AMF was remarkable.  相似文献   

13.
本文通过盆栽试验研究三种螯合剂(EDTA、[s,s】-EDDS、DTPA)对小麦幼苗吸收土壤中重金属及其它微量元素的效应,并且通过改进的BCR连续提取法分析了种植后土壤样品中金属元素的形态。结果表明:EDTA、DTPA的添加导致小麦幼苗地上部分生物量以及叶片叶绿素a含量显著下降。螯合剂的存在明显增加了Pb和Mn在幼苗根部和茎叶的富集,并增加其由根部向茎叶的传输.但对Fe和Ni的作用比较小。小麦幼苗收获时,除Zn之外,其它元素酸溶/可交换态金属含量与对照组相比均有非常显著的增加,而各元素的可还原态由于EDTA等螯合剂的添加而有明显下降。添加螯合剂的情况下,富集量与酸溶/可交换态含量之间的相关系数大大提高,且各处理组茎叶富集量与酸溶/可交换态之间呈显著(P〈0.05)或极显著相关(P〈0.01)。因此,三种螯合剂的添加主要影响的是生物可利用形态以及潜在的生物可利用形态,并且可能导致可还原态以及可氧化态向酸溶/可交换态转变,增加金属的生物可利用性,从而也增加潜在生态风险。  相似文献   

14.
在温室条件下以枳〔Poncirus trifoliata(L.)Raf.〕组培苗为试材,研究了接种Glomus versiforme和G.mosseae对其生长、碳水化合物和抗氧化酶的影响.结果表明,接种G.versiforme的组培苗和接种G.mosseae的组培苗分别在第二级侧根和第一级侧根中观察到最高的菌根侵染率、泡囊数、丛枝数和侵入点.两种丛枝菌根真菌都显著提高了茎粗、叶面积、叶片数、根系体积、地上部干重、地下部干重、叶绿素和类胡萝卜素含量.两种丛枝菌根真菌显著促进了叶片和根系可溶性糖以及总的非结构碳水化合物含量.丛枝菌根真菌也提高了叶片和根系中SOD、POD和CAT活性,但显著抑制了叶片和根系中可溶性蛋白含量.G.versiforme对柑橘组培苗生长和碳水化合物的促进效果较好;G.mosseae对组培苗抗氧化酶的促进效果较好.表4参26  相似文献   

15.
The present study deals with metal uptake by Brassica juncea in the presence of Pseudomonas fluorescens Pf 27 for Zn, Cu and Cd removal from brass and electroplating-industry effluent-contaminated soil. Inoculation of P. fluorescens significantly (p<0.05) increased water soluble (Ws) and exchangeable (Ex) metal content in contaminated soil in laboratory conditions and also enhanced plant biomass by 99% and chlorophyll content by 91% as compared to uninoculated plants in the greenhouse. The metal uptake by B. juncea followed the pattern Zn>Cu>Cd and increased with increasing plant growth duration. P. fluorescens inoculation increased root and shoot uptake of Zn by 3.05 and 2.69, Cu by 3.19 and 2.82 and Cd by 3.11- and 2.75-fold, respectively. BCF value for each metal was>1 and increased by 44%, 42% and 38% for Zn, Cu and Cd, respectively, in inoculated conditions, whereas TF remained unaffected and followed the order Zn>Cd>Cu. P. fluorescens inoculation also enhanced Ws fraction of Zn, Cu and Cd by 99%, 77% and 90% and Ex by 107%, 70% and 93%, respectively. Results depicted that association of B. juncea with P. fluorescens could be a promising strategy for enhancing soil metal bioavailability and plant growth for successful phytoremediation of heavy metal contaminated soils.  相似文献   

16.
A field study was conducted in a dried waste pool of a lead (Pb) mine in Arak (Iran) to find the accumulator plant(s) and to evaluate the amount of metal bioaccumulation in the root and shoot portion of the naturally growing vegetation. Concentrations of heavy metals were determined both in the soil and the plants that were grown in the dried waste pool. The concentrations of total Cu, Zn, Pb, and Ni in the waste pool were found to be higher than the natural soil and the toxic levels. The results showed that six dominant vegetations, namely, Centaurea virgata, Eleagnum angustifolia, Euphorbia macroclada, Gundelia tournefortii, Reseda lutea, and Scariola orientalis accumulated heavy metals. Based on the results, it was concluded that E. macroclada belonging to Euphorbiaceae is the best Pb accumulator and also a good accumulator for Zn, Cu, and Ni. The bioaccumulation ability of E. macroclada was evaluated in experimental pots. The study showed that the amount of heavy metals in polluted soils decreased several times during two years of phytoremediation. The accumulation of metal in the root, leaves, and shoot portions of E. macroclada varied significantly, but all the concentrations were within the toxic limits. Based on the obtained data, E. macroclada is an effective accumulator plant for soil detoxification and phytoremediation in critical conditions.  相似文献   

17.
White clover potted experiments were performed to investigate the effects of seven indigenous arbuscular mycorrhizal fungi (AMF) communities isolated from different test plots subjected to long-term fertilisation on soil enzyme activities, number of soil bacteria and fungi. The results showed that the inoculation of arbuscular mycorrhizal fungi communities increased the mycorrhizal infection rate of the plants and promoted the growth of plants. The Mnp treatment was most effective. The shoot biomass, root biomass, potassium and nitrogen uptake of the white clover in Mnp treatment group were increased by 61.54%, 84.00%, 62.50% and 46.71% respectively, compared with those in non-inoculation treatment. The inoculation of AMF communities had little effect on the number of bacteria in the soil, but significantly increased the number of soil fungi. Mnk treatment group had the highest number of fungi in the soil, which was 9.91 times that of the non-inoculation treatment group. The catalase and dehydrogenase activities were both significantly improved in Mnp treatment by 28.12% and 205.38% respectively, compared with those of the control treatment (-M). The urease, invertase and cellulase activities reached the highest levels in the Mck treatment; they were increased by 142.79%, 41.17% and 77.62% respectively, compared with those of the control treatment. Pearson correlation analysis showed that the soil enzyme activity was not correlated with the mycorrhizal infection rate, but correlated with the spore number of the AMF community. The impact of AMF community on soil quality is important for us to understand the function of the ecosystems. Relevant study provides important guidance for maintaining the balance of the soil-plant system and the development of sustainable agriculture.  相似文献   

18.
Efficient phytoremediation of uranium mine tailings by tobacco   总被引:1,自引:0,他引:1  
This investigation shows that tobacco plant roots and leaves accumulate 60?times more uranium than previously reported. Phytoremediation is a convenient technique to clean up polluted soils using herbaceous plants and trees. Increasing research aims to identify novel plant species that accumulate toxic metals. Tobacco plant (Nicotiana tabacum L.) is a promising cultivar for phytoremediation because tobacco is fast growing and easily propagated. Here, we study phytoremediation of uranium by two tobacco varieties Virginia and Burley, bred in natural conditions. Plants were grown on uranium mine tailings with an average uranium content of 15.3?mg?kg?1. Each shoot sample was cross-sectioned into five uniform groups of leaves and stem segments. Results show a substantial variance in uranium uptake according to the section elderliness and origin of the plant parts. The highest concentrations of uranium values recorded in leaves of Burleys and Virginias nearest root shoot sections were 4.18 and 3.50?mg?kg?1, respectively. These values are 60?times higher rates than those previously published for leaves of cultivars grown under similar conditions. Taking into account the level of soil contamination, the content of accumulated uranium demonstrates uranium hyperaccumulatory properties of tobacco plant and its potential utilization in phytoremediation of uranium-contaminated mediums.  相似文献   

19.
The effect of copperchloride (CuCl2) on the level of chlorophyll (a+b), proline, protein and abscisic acid in sunflower (Helianthus annuus L.) seedlings were investigated Control and copper treated (0.4, 0.5 and 0.6 mM) seedlings were grown for ten days in Hoagland solution. Abscisic acid content was determined in root, shoot and leaf tissues of seedlings by HPLC. Copper stress caused significant increase of the abscisic acid contents in roots, shoots and leaves of seedlings. The increase was dependent on the copper salt concentration. Enhanced accumulation of proline in the leaves of seedlings exposed to copper was determined, as well as a decrease of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01). It was observed that the level of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01) remarkably decreased as copper concentration increased to 0.6 mM, although the levels of proline and abscisic acid in the leaves of plants were increased--a dose-depended behavior The same trends were also observed with the level of abscisic acid of stems and roots. Copper has dose- depended effects on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. Thus, we assumed that copper levels increase above some critical points seedling growth get negative effects. This assumption is in line with previous findings.  相似文献   

20.
螯合剂对小麦幼苗吸收金属以及土壤金属形态的效应   总被引:3,自引:0,他引:3  
本文通过盆栽试验研究三种螯合剂(EDTA、[S,S]-EDDS、DTPA)对小麦幼苗吸收土壤中重金属及其它微量元素的效应,并且通过改进的BCR连续提取法分析了种植后土壤样品中金属元素的形态。结果表明:EDTA、DTPA的添加导致小麦幼苗地上部分生物量以及叶片叶绿素a含量显著下降。螯合剂的存在明显增加了Pb和Mn在幼苗根部和茎叶的富集,并增加其由根部向茎叶的传输,但对Fe和Ni的作用比较小。小麦幼苗收获时,除Zn之外,其它元素酸溶/可交换态金属含量与对照组相比均有非常显著的增加,而各元素的可还原态由于EDTA等螯合剂的添加而有明显下降。添加螯合剂的情况下,富集量与酸溶/可交换态含量之间的相关系数大大提高,且各处理组茎叶富集量与酸溶/可交换态之间呈显著(P0.05)或极显著相关(P0.01)。因此,三种螯合剂的添加主要影响的是生物可利用形态以及潜在的生物可利用形态,并且可能导致可还原态以及可氧化态向酸溶/可交换态转变,增加金属的生物可利用性,从而也增加潜在生态风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号