首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrethroids are contaminants found in the aquatic environment, and their toxicological effects on aquatic organisms have received extensive attention. However, the impact on freshwater bivalve of exposure to these chemicals is still largely unknown. Freshwater mussels Unio ravoisieri were exposed to two nominal permethrin (PM) concentrations C1?=?50?µg/L and C2?=?100?µg/L during 7 days. The measured concentrations of PM using gas chromatography (GC/ECD) in the treated aquariums were, respectively, 28.7–62.3?µg/L. Catalase (CAT), Glutathione-S-transferase (GST), and Acetylcholinesterase (AChE) activities, Glutatione (GSH) and Malondialdehyde (MDA) levels were determined in gills of U. ravoisieri. Significant increase in CAT activity by the lowest concentration and decrease by highest concentration were observed. Additionally, GST activity was increased in a concentration-dependent manner. However, statistically significant decrease in GSH levels (about 39%) was observed only at high concentration of this compound (100?µg/L). PM generated an increase in MDA levels reaching the highest value at the high concentration. AChE activity of mussel ranging from 51% inhibition at lowest concentration 50?µg/L to 89% inhibition at highest concentration 100?µg/L. The results indicated that oxidative stress and cell damage might be one of the main mechanisms of PM toxicity to freshwater mussels.  相似文献   

2.
Accumulation of metals by aquatic organisms is mostly affected by other biological components in environments. In this study, cadmium (Cd) accumulation in green algae, Cladophora glomerata (L.) Kutz., exposed to 0.1 and 1.0 mg L?1 of Cd for 15 and 30 days was examined in laboratory conditions in the presence of Nile tilapia Oreochromis niloticus (L.). The green algae C. glomerata accumulated Cd concentrations as 690 ± 70 and 3430 ± 470 mg kg?1 on day 15, and 1130 ± 180 and 6830 ± 1540 mg kg?1 on day 30. There were significant increases (p < 0.05) in metal accumulation by green algae as the exposure time and metal concentration increased. The results also indicated that the presence of Nile tilapia in the medium led to a significant Cd accumulation in the green algae compared to control (p < 0.05).  相似文献   

3.
Disposal of waste into aquatic ecosystems may cause microalgae to be exposed to various metals, e.g. copper and cadmium. The effects caused by combinations of metals may be more serious. Evaluations of subcellular fate, bioaccumulation, and biological effects of metals on aquatic organisms are generally derived from experiments with individual metals. The present study aims to evaluate the effects of exposure of Chlorella pyrenoidosa to copper and cadmium in combination on subcellular accumulation, distribution, and growth. The algae were exposed for 72 h to copper at concentrations of 13 – 25 µmol L?1, cadmium at about 6 µmol L?1, and combinations thereof. The levels of copper and cadmium in subcellular organelles, heat-denaturated protein, metal-rich granules, and heat-stable protein were determined by atomic absorption spectrometry. Exposure of C. pyrenoidosa to copper and cadmium in combination inhibited growth more strongly than copper and cadmium individually. Highest accumulation was observed in metal-rich granules and heat-stable proteins. Administration of both metals in combination affected their subcellular distribution: copper was mainly distributed into the metal-rich granules (70%–80%) and heat-stable proteins (9%–24%), cadmium in the metal-rich granules (88%–98%).  相似文献   

4.
Benzo(k)fluoranthene [B(k)F] is one of the widespread priority pollutants of polycyclic aromatic hydrocarbons that has been scarcely studied for exposure assessment. With studies reporting a high amount B(k)F in sediments and water samples around the world, it has become vital to study its effects on aquatic organisms. In this connection, this study is conducted to study the effect of different concentrations of B(k)F (1, 10, 25 and 50?µg/L) in marine gastropod Morula granulata exposed in vivo for 96?h. A concentration-dependent increase in percentage tail DNA (TDNA) as measured by comet assay was observed in snails exposed to B(k)F. Exposure concentrations above 1?µg/L B(k)F showed significant increase in superoxide dismutase (SOD) activity and lipid peroxidation value in snails. After 96?h, SOD activity was found to be doubled for 50?µg/L B(k)F in comparison to control. A significant increase in catalase and glutathione S-transferase activity was observed at all exposure conditions at the end of the exposure time. Our study showed that B(k)F induces oxidative stress in snails which further lead to genotoxic damage. To our knowledge, this is the first study on oxidative stress and genotoxic damage in gastropods exposed to B(k)F.  相似文献   

5.
ABSTRACT

Cadmium (Cd) is a toxic-heavy metal that induces a wide range of behavioural, biochemical and physiological effects in aquatic organisms. Oxidative damage has been proposed as a possible mechanism involved in cadmium toxicity. The current study was carried out to evaluate the antioxidant activity of Spirulina as feed additive (1?mg/L) against the toxicity of cadmium (Cd) 0.5?mg/L in freshwater mussel Unio ravoisieri. At the end of the exposed period of 4 days, digestive gland antioxidant status Superoxide dismutase, Catalase, Glutathione-S-transferase and damage markers such as Malondialdehyde and Protein carbonyl were determined. Associations between biomarkers were assessed by a multivariate analysis technique, principal component analysis (PCA). The results of this study revealed that digestive gland antioxidant status showed a significant decrease when mussels were exposed to Cd. Superoxide dismutase, Catalase and Glutathione-S-transferase activities in the Cd?+?SP group were significantly higher than the Cd group (p P?相似文献   

6.
Cd, Pb, and Zn were quantified in liver and kidney of red foxes (Vulpes vulpes) which were hunted during the 2003–2011 hunting seasons in Galicia (NW Spain). The effects of age and gender were evaluated to determine whether these variables should be included in future biomonitoring studies. The concentrations of hepatic and renal Cd (average 0.6 and 1.3 µg/g) and Pb (0.8 and 0.06 µg/g, respectively) were similar to background levels, with no known toxicological relevance. Similarly, the average levels of Zn in liver and kidney (77 and 17 µg/g) were in the range of physiological levels for canids. Although no significant gender-dependent variations were observed, the effect of aging was evident: the levels of hepatic Pb and both hepatic and renal Cd were higher in adults than in juveniles. Age should be included as a parameter during future biomonitoring programs focusing on trace metal bioaccumulation in red foxes.  相似文献   

7.
Cadmium (Cd) is one of the heavy metals which contaminate the environment including water, air, and soil. At low concentrations, Cd produces adverse effects in aquatic organisms. An effort to reduce the level of Cd was conducted by removing the metal with chitosan. The aim of this study was to study the adsorption of Cd by using chitosan isolated from the shrimp Penaeus sp. as a function of stirring duration and chitosan concentration in aqueous solution. In this study, chitin was isolated by using NaOH 3% and HCl 1.25 N, adding NaOH 50% for the transformation of chitin to chitosan. For the adsorption test, chitosan was added to Cd solutions at concentrations of 0.2, 0.4, or 0.6 g per 10 ml Cd(NO3)2, stirring the solution for 5, 10, or 15 min, respectively. The results showed that the yield of isolated chitosan was 56% of crude prawn shell. The optimum concentration of chitosan was 0.6 g/10 ml with a stirring duration 10 min reducing Cd concentration by 91.7%.  相似文献   

8.
The objective of the present study was to investigate the levels of Cd, Pb, Co, and Cu, in A. chukar, A. griseogularis, and Columba livia, in order to (1) examine the age- and gender-related variation in trace metal accumulation and (2) to determine the significance between metal concentrations in the kidney, liver, and pectoral muscle. Mean concentrations of Cd and Pb in the kidney of A. chukar, A. griseogularis, and C. livia were 3.7, 4.1, and 3.9?µg/g and 15.9, 13.6, and 15.5?µg/g, respectively. In the liver, they were 4.8, 4.3, and 3.9?µg/g and 21.4, 21.3, and 21.1?µg/g, and in the pectoral muscle, 2.3, 2.3, and 2.2?µg/g and 7.1, 7.1, and 7.8?µg/g, respectively. Metal concentrations in three bird species were decreased in the sequence of liver?>?kidney?>?pectoral muscle. Trace metal concentrations in the three species were higher in females than in males. The mean concentrations of Cd in the kidney and liver were higher than the background levels, as well as Pb concentrations in the liver were higher than the toxic level.  相似文献   

9.
本文作者主要研究了腐殖酸对聚乙烯吡咯烷酮包覆的纳米银颗粒(polyvinylpyrrolidone-coated AgNPs)毒性的影响,受试生物涵盖了水生系统不同的营养级别,包括藻类(Raphidocelis subcapitata)、水蚤类(Chydorus sphaericus)以及淡水鱼类(Danio rerio)。结果显示,腐殖酸可降低AgNPs对本研究中所有水生生物的毒性,并具有明显的剂量效应关系。原因为:1)腐殖酸使AgNPs表面带有更多负电荷,这阻碍了AgNPs与藻细胞的接触,使毒性降低;2)腐殖酸抑制了AgNPs中Ag+的溶出,而本研究显示自由Ag+的毒性高于团聚的纳米银颗粒。
精选自Zhuang Wang, Joris T.K. Quik, Lan Song, Evert-Jan Van Den Brandhof, Marja Wouterse and Willie J.G.M. Peijnenburg. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry: Volume 34, Issue 6, pages 1239–1245, June 2015. DOI: 10.1002/etc.2936
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.2936/full
  相似文献   

10.
本文作者主要研究了腐殖酸对聚乙烯吡咯烷酮包覆的纳米银颗粒(polyvinylpyrrolidone-coated AgNPs)毒性的影响,受试生物涵盖了水生系统不同的营养级别,包括藻类(Raphidocelis subcapitata)、水蚤类(Chydorus sphaericus)以及淡水鱼类(Danio rerio)。结果显示,腐殖酸可降低AgNPs对本研究中所有水生生物的毒性,并具有明显的剂量效应关系。原因为:1)腐殖酸使AgNPs表面带有更多负电荷,这阻碍了AgNPs与藻细胞的接触,使毒性降低;2)腐殖酸抑制了AgNPs中Ag+的溶出,而本研究显示自由Ag+的毒性高于团聚的纳米银颗粒。
精选自Zhuang Wang, Joris T.K. Quik, Lan Song, Evert-Jan Van Den Brandhof, Marja Wouterse and Willie J.G.M. Peijnenburg. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry: Volume 34, Issue 6, pages 1239–1245, June 2015. DOI: 10.1002/etc.2936
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.2936/full
  相似文献   

11.

Background

Due to the rising number of type 2 diabetes patients, the antidiabetic drug, metformin is currently among those pharmaceuticals with the highest consumption rates worldwide. Via sewage-treatment plants, metformin enters surface waters where it is frequently detected in low concentrations (µg/L). Since possible adverse effects of this substance in aquatic organisms have been insufficiently explored to date, the aim of this study was to investigate the impact of metformin on health and development in brown trout (Salmo trutta f. fario) and its microbiome.

Results

Brown trout embryos were exposed to 0, 1, 10, 100 and 1000 µg/L metformin over a period from 48 days post fertilisation (dpf) until 8 weeks post-yolk sac consumption at 7 °C (156 dpf) and 11 °C (143 dpf). Chemical analyses in tissues of exposed fish showed the concentration-dependent presence of metformin in the larvae. Mortality, embryonic development, body length, liver tissue integrity, stress protein levels and swimming behaviour were not influenced. However, compared to the controls, the amount of hepatic glycogen was higher in larvae exposed to metformin, especially in fish exposed to the lowest metformin concentration of 1 µg/L, which is environmentally relevant. At higher metformin concentrations, the glycogen content in the liver showed a high variability, especially for larvae exposed to 1000 µg/L metformin. Furthermore, the body weight of fish exposed to 10 and 100 µg/L metformin at 7 °C and to 1 µg/L metformin at 11 °C was decreased compared with the respective controls. The results of the microbiome analyses indicated a shift in the bacteria distribution in fish exposed to 1 and 10 µg/L metformin at 7 °C and to 100 µg/L metformin at 11 °C, leading to an increase of Proteobacteria and a reduction of Firmicutes and Actinobacteria.

Conclusions

Overall, weight reduction and the increased glycogen content belong to the described pharmaceutical effects of the drug in humans, but this study showed that they also occur in brown trout larvae. The impact of a shift in the intestinal microbiome caused by metformin on the immune system and vitality of the host organism should be the subject of further research before assessing the environmental relevance of the pharmaceutical.
  相似文献   

12.
The use of aquatic organisms to monitor for contamination is well-established. Therefore, this study was designed to assess the adverse effects of titanium dioxide nanoparticles (TiO2NP) in freshwater snail Lymnea luteola L. (L. luteola). For TiO2NPs ecotoxicity tests, snails were exposed for seven days. A dose and time-response relationship was observed for TiO2NP-induced genotoxicity. Induction of oxidative stress in digestive gland was observed by a decrease in glutathione and gluthathions-S-transferase levels accompanied by elevated malondialdehyde levels at TiO2NP (9 and 28 µg/mL). Superoxide dismutase activities were markedly reduced at TiO2NP (9 and 28 µg/mL) at days 1 and 3, but not at day 7. Catalase activities were decreased at days 1 and 3 but increased at higher concentration of TiO2NP at day 7. DNA fragmentation occurring in L. luteola due to ecotoxic impact TiO2NP was further substantiated by alkaline single-cell gel electrophoresis assay and expressed in terms of percent tail DNA and olive tail moment. The results indicate that the interaction of these TiO2NP with snail influences the toxicity, which is mediated by oxidative stress in a dose- and time-dependent manner. The measurement of DNA integrity in L. luteola thus provides an early warning signal of contamination of the aquatic ecosystem by TiO2NP. Data suggest the freshwater snail L. luteola is a potential biomonitor organism.  相似文献   

13.
Data from National Health and Nutrition Examination Survey for 2013–2014 were used to compare observed levels of selected metals in blood, serum, and urine among US adults aged ≥20 years for exclusive cigar, cigarettes, and e-cigarette users. Adjusted geometric means for e-cigarette users were found to be higher than for cigar users for blood manganese (10.3 vs. 7.9 µg/L, p = 0.02). Cigar users were found to have lower adjusted geometric means than cigarette users for urine cobalt (0.22 vs. 0.4 µg/L, p = 0.04) and urine antimony (0.03 vs. 0.06 µg/L, p = 0.03). Adjusted levels of blood selenium, serum copper, selenium, and zinc, and urine arsenic, barium, molybdenum, tin, strontium, thallium, tungsten, and uranium were found to be comparable among cigarettes only, cigar only, and electronic cigarettes only users. However, irrespective of the comparative levels of these metals among cigar, cigarette, and e-cigarette users, focus must be to assess the short- and long-term health effects of the exposure to these metals particularly nanoparticles via inhalation from e-cigarette aerosols.  相似文献   

14.
邻苯二甲酸酯类(PAEs)增塑剂被普遍用于塑料制品中,在大气、水等环境中广泛存在,其潜在危害受到关注。水环境中的PAEs,从藻类等初级生产者吸收,到浮游动物、游泳动物等通过鳃和皮肤直接接触或捕食摄取,在水生生物之间转化和传递。笔者总结了PAEs在水生食物链中不同营养级生物体的含量,分析了PAEs在食物链中富集和转化的影响因素(辛醇-水分配系数Kow、代谢转化、生长阶段等)。目前的研究表明PAEs可能在食物链中传递,最终在较高营养级生物体中富集。同时总结了5种PAEs(邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酯丁苄酯、邻苯二甲酸二(2-乙基)己酯和邻苯二甲酸二甲酯)对水生生物的毒性效应的研究进展,已有研究表明PAEs对藻类的细胞器和抗氧化体系,对鱼类的生殖系统、内分泌系统和抗氧化体系都有一定程度损伤。PAEs在食物链中传递和富集现象的存在会对高营养级水生生物产生潜在危害。针对目前PAEs在食物链中传递的研究数量较少、结构简单等问题,对未来研究方向做了简要分析和展望。  相似文献   

15.
微量元素硒不仅是人和动物必需的营养元素,也是植物生长发育不可缺少的元素。硒酸盐在水体中溶解度高于其他环境介质,导致水生生物对无机硒(硒酸盐)有更高的利用率。藻类能吸收无机硒,可将无机硒有效地转化为有机形态。藻体内的硒主要以硒蛋白、硒核酸、硒多糖等生物大分子以及硒代半胱氨酸和硒代蛋氨酸等生物小分子有机化合物存在。在水生生态系统中,藻类是硒的主要吸收者。富硒藻类通过食物链将硒传递至浮游动物、贝和鱼等动物体内,能提高其抗氧化能力,从而导致其对重金属耐受性增强。本文综述了藻类在自然界硒生物有机化中的地位和作用,藻类对硒的富集方式及代谢途径,硒在藻类中的生物学效应,富硒藻类的开发利用现状及今后的发展方向,较全面地综述了富硒藻类研究进展。  相似文献   

16.
We investigated the effects of ethyl 2-methyl acetoacetate (EMA) on growth of the marine diatom algae Phaeodactylum tricornutum (P. tricornutum) and Skeletonema costatum (S. costatum). Growth of P. tricornutum was significantly inhibited by the minimum concentration (3.5 mmol·L ?1) of EMA at lower initial algal densities (IADs) (3.6×104 and 3.3×105 cells·mL ?1). However, at the highest IAD, significant growth inhibition was found at above 7 mmol·L ?1 of EMA exposure. In S. costatum, EMA concentrations of 10.5 mmol·L ?1 or more significantly inhibited growth at lower IAD (3×104 and 1.8×105 cells·mL ?1); at the highest IAD, only EMA concentrations above 14 mmol·L ?1 obviously inhibited the growth of S. costatum. Changes in specific growth rates and pigment were consistent with algal growth, but only at higher EMA concentrations or lower IAD values was the ratio of chlorophyll a (Chla) to carotenoid significantly lower than the control. Medium effective concentration (EC 50) values were in the order 4.07, 8.03 and 12.27 mmol·L ?1 for P. tricornutum and 7.48, 11.92 and 17.22 mmol·L ?1 for S. costatum. All these results show that the effect of EMA on the growth of algae was species specific and mainly depended on IAD, which might be an important factor to influence algal growth.  相似文献   

17.
Abstract

Festuca rubra L. plants are pseudometallophytes colonizing abandoned Pb/Zn mine areas, successfully employed in phytostabilization. To study the contribution of low-molecular weight organic acids to metal tolerance, F. rubra plants were grown for three months in hydroponics with Cd (1.8, 18 and 36 µmol?L?1), Pb (50, 250 and 500?µmol?L?1) and Zn (0.3, 3 and 6?mmol?L?1), separately, and in ternary combination (18?µmol?L?1 Cd + 250?µmol?L?1 Pb + 0.3?mmol?L?1 Zn). The roots retained most of the metals but their distribution from shoot to root was altered when the plants were treated with the ternary combination. The main organic acids in roots were citrate and malate. At the lowest concentrations, the metals caused small reductions in biomass, had no effects on photosynthetic pigments nor on malondialdehyde, but led to increases in root organic acids. At higher concentrations, phytotoxic responses were observed, associated with a decline of citrate and malate in the roots.  相似文献   

18.
Bisphenol A, a plastic monomer and plasticizer, is a well-known endocrine disrupter, widely present in the aquatic environment, but little is known regarding its neurotoxicity in fish. Herein, we investigated its effects on male zebrafish brain. Zebrafish were exposed to 10 µg/L BPA for 45 days. An isobaric tags for relative and absolute quantitation approach coupled with nano high-performance liquid chromatography-tandem mass spectrometry analysis was employed to detect and identify differentially expressed proteins. A total of 46 proteins was identified and categorized into functional classes that mostly included metabolism and transport, cytoplasm and organelle, ion and nucleotide binding, indicating that bisphenol A toxicity in fish brain is complex. The biological pathways of starch and sucrose metabolism, calcium signaling, and aminoacyl-tRNA biosynthesis were also induced. Proteomic analyses add new perspectives to bisphenol A neurotoxicity in aquatic organisms.  相似文献   

19.
The levels of cadmium (Cd), chromium (Cr), and copper (Cu) were assessed in 24 fruit species in Meerut, North India using atomic absorption spectrometry. Data showed that Cd concentrations in fruits except banana, pomegranate, papaya, orange, and cherry were above the recommended maximum allowable limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) (0.2 µg/g). Average Cr concentrations in all analyzed fruit samples were also found higher than the safe limit of FAO/WHO (2.3 µg/g). In contrast, fruits viz. banana, lychees, papaya, Indian apple, Asian apple, and tiger nut showed concentration of Cu below the recommended safe limit (40 µg/g). Our study demonstrated that concentration of studied heavy metals in all tested samples varied according to fruit species and respective contaminants. Data suggest that more strict rules/standards need to be applied by National/International regulatory agencies in order to make these important fruit items free from heavy metals contamination and protect the consumer.  相似文献   

20.
本文作者主要研究了腐殖酸对聚乙烯吡咯烷酮包覆的纳米银颗粒(polyvinylpyrrolidone-coated AgNPs)毒性的影响,受试生物涵盖了水生系统不同的营养级别,包括藻类(Raphidocelis subcapitata)、水蚤类(Chydorus sphaericus)以及淡水鱼类(Danio rerio)。结果显示,腐殖酸可降低AgNPs对本研究中所有水生生物的毒性,并具有明显的剂量效应关系。原因为:1)腐殖酸使AgNPs表面带有更多负电荷,这阻碍了AgNPs与藻细胞的接触,使毒性降低;2)腐殖酸抑制了AgNPs中Ag+的溶出,而本研究显示自由Ag+的毒性高于团聚的纳米银颗粒。
精选自Zhuang Wang, Joris T.K. Quik, Lan Song, Evert-Jan Van Den Brandhof, Marja Wouterse and Willie J.G.M. Peijnenburg. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry: Volume 34, Issue 6, pages 1239–1245, June 2015. DOI: 10.1002/etc.2936
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.2936/full
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号