首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the slow rate of incorporation of inert-metal ions into free-base porphyrins compared to other transition metals, several methods have been proposed to accelerate the rate of metalation. However, these methods have disadvantages such as low yields, difficulties of purification of final products, and environmental effects. To avoid those disadvantages, we reacted Pt(II) and Pd(II) salts with H2(TPP), H2(TMPyP)4+, and their β-pyrrole derivatives, H2(Br8TPP) and H2(Br8TMPyP)4+, in 1-butyl-3-methylimidazolium bromide ([bmim]+Br) under microwave irradiation. The combination of microwave heating and ionic liquids provides efficient thermal energy transfer among the porphyrins and metal salts. In addition, ionic liquids stabilize charged species as well as their intermediates, due to their high dipole moment and high boiling point. This not only shortens the reaction time but also gives high yields of products at relatively low temperatures, of about 100°C compared to conventional synthesis methods: 150°C for DMF, 190°C for DMSO. Here, we demonstrate that Pt(II)/Pt(II) metalloporphyrins are synthesized at high rates, e.g. 6–30 min for 100% metalation, with high yields of 79–93% in [bmim]+Br by microwave activation.  相似文献   

2.
The Schiff bases, potassium salt of salicylidene-β-alanine [KHL], bis(benzylidene)ethylenediamine [SB1] and thiophene-o-carboxaldene-p-toluidine [SB2], and mixed-ligand complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been prepared. They were characterized by elemental analyses, magnetic susceptibility measurements, thermogravimetric analyses (t.g.a.), infrared spectra and electronic spectra. The mixed-ligand complexes were found to have the general composition [M(L)(SB)(H2O)]. All the mixed-ligand complexes were found to have six-coordinated octahedral geometry. The fungitoxic activity of the ligands, metal salts, control (DMSO), bavistin, emcarb, and mixed-ligand complexes were screened against Aspergillus niger, Fusarium oxysporum and Aspergillus flavus. All the mixed-ligand complexes show higher fungitoxic activity as compared to the Schiff bases, metal nitrate and control (dimethyl sulphoxide, DMSO), and moderate fungitoxic activity as compared to the fungicides (bavistin and emcarb).  相似文献   

3.
Subsurface geochemical behavior of As(V) with Fe(II) was studied under strict anoxic conditions. Abiotic reduction of As(V) (0.1 mM) to As(III) by aqueous Fe(II) and sorbed Fe(II) in pH range 5.0–7.0 and Fe(II)aq concentration (0.6–1.2 mM) was investigated along with the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen (DO). Although the reduction was thermodynamically feasible for homogeneous chemical conditions, practically no As(V) reduction by aqueous Fe(II) was observed. Similarly, no sorbed As(V) reduction was observed under the heterogeneous experimental conditions by sorbed Fe(II) onto synthetic iron oxide (hematite, α-Fe2O3). Experimental results on Fe(II) oxidation by DO in the presence of 0.1 mM As(V) showed a significantly slower Fe(II) oxidation, which might be due to the formation of Fe(II)–As(V) complex in the aqueous phase. The results of this study demonstrate that As(V) is relatively stable in the presence of Fe(II) under subsurface environment and interfere the oxidation of Fe(II).  相似文献   

4.
The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide (yMn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N2 adsorption-desorption, H2-TPR, O2-TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities of yMn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the yMn5Cu/Ti- Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10–3 mmol·g–1·s–1 and the lowest T 50% and T 100% of 56°C and 86°C, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest O2 desorption temperature, and the highest surface Mn3+/Mn4+ atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of chemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.
  相似文献   

5.
● Term of manganese-oxidizing microorganisms should be reconsidered. ● Visible light induces heterotrophic bacteria to produce superoxide. ● Heterotrophic bacteria oxidize Mn(II) ions with a fast oxidation rate. ● Superoxide oxidizing Mn(II) ions is an unintended side reaction of bacteria. ● Superoxide is an important oxidation force of Mn(II) in the environment. Manganese oxides are widely distributed in soils and sediments, affecting the migration and transformation of heavy metals and organic pollutants. The microbial conversion of soluble Mn(II) into insoluble Mn(III/IV) oxides is considered to be the initial source of manganese oxides in the environment; however, whether this process is related to a physiological role remains unclear. Here, we explored the microbial manganese oxidation process under visible light by using coastal surface seawater microorganisms. Visible light greatly promotes the oxidation rate of Mn(II), and the average rate reaches 64 μmol/(L·d). The generated manganese oxides were then conducive to Mn(II) oxidation, thus the rapid manganese oxidation was the result of the combined action of biotic and abiotic, and biological function accounts for 88 % ± 4 %. Extracellular superoxide produced by microorganisms induced by visible light is the decisive factor for the rapid manganese oxidation in our study. But the production of these superoxides does not require the presence of Mn(II) ions, the Mn(II) oxidation process was more like an unintentional side reaction, which did not affect the growth of microorganisms. More than 70 % of heterotrophic microorganisms in nature are capable of producing superoxide, based on the oxidizing properties of free radicals, all these bacteria can participate in the geochemical cycle of manganese. What’s more, the superoxide oxidation pathway might be a significant natural source of manganese oxide.  相似文献   

6.
The surface complexation of Cd(II) to goethite (α‐FeOOH) at varying concentrations of solid, background electrolyte and Cd(II) has been investigated. The data was quantified according to the generalized version of triple layer (TLM) surface complexation model. In the presence of atmospheric CO2, it was found that the experimental data of Cd(I) α‐FeOOH system could be explained satisfactorily by incorporating both the > FeOHCd+ and > FeOCdHCO3 in the calculations. However, at excessive concentrations of Cd(II), typically over 13% surface coverages, the TLM predictions significantly underestimated the experimentally observed data obtained for Cd(II)/α‐FeOOH systems.  相似文献   

7.
Sorption by humic acids is known to modify the bioavailability and toxicity of metals in soils and aquatic systems. The sorption of cadmium(II) and copper(II) to two soil humic acids was measured at pH 6.0 using ion-selective electrode potentiometric titration at different temperatures. Sorption reactions were studied with all components in aqueous solution, or with the humates in suspension. Adsorption reactions were described using a multiple site-binding model, and a model assuming a continuous log-normal distribution of adsorption constants. Adsorption of Cu2+ was more favourable than adsorption of Cd2+. The log-normal distribution model provided the closest fit to observations and allowed parameterisation of adsorption data using a mean adsorption constant (log K μ). Sorption of Cd2+ to dissolved humic acids increased slightly in extent and sorption affinity with increasing temperature, but the effect was small (log K μ 2.96–3.15). A slightly greater temperature effect occurred for sorption of Cd2+ to solid-phase humic acids (log K μ 1.30–2.08). Sorption of copper(II) to both aqueous- and colloidal-phase humates showed more pronounced temperature dependence, with extent of sorption, and sorption affinity, increasing with increasing temperature (log K μ 3.4–4.9 in solution and 1.4–4.5 in suspension). The weaker adsorption of Cd2+ than Cu2+, and smaller temperature effects for dissolved humates than suspended humates, suggested that the observed temperature effects had a kinetic, rather than thermodynamic, origin. For any metal-to-ligand ratio, free metal ion concentration, and by inference metal bioavailability, decreased with increasing temperature. The consistency of the data with kinetic rather than thermodynamic control of metal bioavailability suggests that equilibrium modelling approaches to estimating bioavailability may be insufficient.  相似文献   

8.

Goal and Scope

The goal of this study is the investigation and the grafic presentation of the characteristic redox zonation in a mineral oil contaminated aquifer which will be formed in the plume downstream of the contamination source. Methanogenic conditions, sulfate-reduction, Fe(III)-reduction, Mn(IV)-reduction, nitrate-reduction, aerobic conditions. By that indications type and degree of microbial degradation which is the most important part in Natural Attenuation (NA) processes can be obtained easily.

Methods

Changes of the groundwater parameters Eh, O2, NO 3 ? , SO4 2?, Fe2+, Mn2+, HCO3 ?, Ca2+ will be measured upstream, downstream and also in the centre of the plume. The results will be presented in a sequence of special diagrams.

Results and Conclusion

When microbial degradation of hydrocarbons takes place, a microbial community will always use that electron acceptor from which it will gain a maximum of energy by the corresponding redox-reactions. This means as long as oxygen is available this will be used. After its depletion nitrate serves as electron acceptor leading via nitrite to the formation of nitrogen or ammonia. Manganese (IV) and Iron (III) species which are rather insoluble are mainly available from the soil-phase, can act as electron acceptor as next, leading to soluble Manganese (II) and Iron (II) compounds in groundwater. Finally before methanogenic conditions occur sulphate will become a suitable electron acceptor leading to the formation of hydrogen sulphide. All these processes of mineralization of the hydrocarbons will lead to the production of CO2 and as consequence to an increase of HCO3 ? in groundwater changing the calcareous/carbonic acid-equilibrium. By that more soluble Ca(HCO3)2 is formed from insoluble CaCO3, so the concentration from Ca2+ will also inerease. Thus, by the action of microorganisms, a typical redox-zonation and changes of other parameters will occur.

Recommendations and Perspective

To follow the changes in time and space of some characteristic groundwater parameters is a simple way to estimate the potential of microbial degradation in a contaminated aquifer considering Natural Attenuation (NA)-processes.  相似文献   

9.
A wide range of pharmaceutical compounds have been identified in the environment, and their existence is a topic of growing concern, both for human and ecological health. The work described here has investigated the photolytic properties of L(+)-α-phenylglycine (L-α-PG-H) in aqueous solution as it can be degraded by photo-catalysis. In 266 nm laser flash photolysis of aqueous solution of L-α-PG-H saturated with nitrogen, two transient absorption bands are observed at 280–330 nm and 450–800 nm, respectively, due to L-α-PG-H radical cation and hydrated electrons (eaq). Then eaq reacts with L-α-PG-H to form the L-α-PG-H radical anion. Decaying rate constants of eaq observed at 720 nm is to be 8.9 × 108 dm3 mol−1 s−1. The rate constant for oxidation of L-α-PG-H by SO4 is calculated as 4.5 × 108 and 4.3 × 108 s−1 mol−1 dm3, respectively. The dissociation constants (pKa) of L-α-PG-H is 3. Excited triplet of L-α-PG-H in solution is formed by laser flash photolysis. The quench rate constant of L-α-PG-H excited triplet (k s) is determined to be 1.3 × 107 dm3 mol−1 s−1 and k 0 is equal to 1.7 × 105 s−1.  相似文献   

10.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   

11.
Ulmus tree leaves were successfully used as a novel and efficient biosorbent for removing cadmium, (Cd(II)), from aqueous solutions in a batch system. A multivariate strategy for optimization of removal efficiency conditions of Cd(II) was carried out. A 23 full factorial design with three center points (9 runs) was performed for screening the main variables and reducing the large number of experimental runs. Initial concentration of metal ion (C m), amount of sorbent (m), and pH were considered as the three main variables at two different levels. The maximum removal efficiency of Cd(II) was achieved within 1 h contact time. It was found that all the main factors and their interactions were significant at p < 0.05. Doehlert response surface methodology was utilized (13 runs) for finding a suitable mathematical model. The analysis of variance and some statistical tests such as lack-of-fit, coefficient of determination (R 2), and residual distribution plot confirmed the validity of the model. The optimum conditions for maximum removal of Cd(II) by Ulmus tree leaves were found as pH = 3.4, m (amount of sorbent) = 0.128 g, C m (initial concentration of metal ion) = 12.1 mg L?1.  相似文献   

12.
Pyrite and other iron sulfides are readily oxidized by dissolved oxygen in aqueous phase, producing acidity and Fe2+, which causes significant environmental problems. Applications of surface coating agents (Na2SiO3 and KH2PO4) were conducted at Boeun (Chungbuk, South Korea) outcrop site, and their efficiencies to inhibit the oxidation of sulfide minerals were monitored for a long-term period (449 days). The rock sample showed positive Net Acid Production Potential (NAPP = 20.23) and low Net Acid Generation pH (NAGpH = 2.42) values, suggesting that the rock sample was categorized in the potential acid-forming group. For the monitored time period (449 days), field study results showed that the application of Na2SiO3 effectively inhibited the pyrite oxidation as compared to KH2PO4. Na2SiO3 as a surface coating agent maintained pH 5–6 and reduced oxidation of pyrite surface up to 99.95 and 97.70 % indicated by Fe2+ and SO4 2? release, respectively. The scanning electron microscope and energy-dispersive X-ray spectrometer analysis indicated that the morphology of rock surface was completely changed attributable to formation of iron silicate coating. The experimental results suggested that the treatment with Na2SiO3 was highly effective and it might be applicable on field for inhibition of iron sulfide oxidation.  相似文献   

13.
抗生素的滥用导致细菌耐药问题日益严重,人类迫切需要开发出新的抗菌药物以减少细菌耐药问题。基于纳米银制备而成的纳米银复合材料在兼顾纳米银抗菌性能的同时不仅能够克服单一纳米银释放速度快、不稳定等缺点,还能缓解细菌耐药的问题,因此被认为是一类具有广泛应用前景的新型抗菌剂。已有研究表明,单一纳米银与某些抗生素的联合使用可以达到协同抗菌效果,但目前尚缺乏对纳米银复合材料与抗生素的联合抗菌性能及机制的研究。本文首先制备出3种不同结构的纳米银复合材料,包括二氧化硅-聚多巴胺-纳米银复合材料(SiO_2-PD-AgNPs)、纳米银@二氧化硅复合材料(AgNPs@SiO_2)和纳米银@二氧化硅-聚多巴胺-纳米银复合材料(AgNPs@SiO_2-PD-AgNPs)。随后测定了纳米银复合材料对大肠杆菌(Escherichia coli, E. coli)和枯草芽孢杆菌(Bacillus subtilis, B. subtilis)的单一毒性效应。结果显示,AgNPs@SiO_2-PD-AgNPs复合材料对2种菌的单一毒性均大于其余2种纳米银复合材料。因此,笔者以AgNPs@SiO_2-PD-AgNPs作为代表,测定了纳米银复合材料与硫酸卡那霉素(kanamycin sulfate, KS)/盐酸土霉素(oxytetracycline hydrochloride, OH)的二元联合抗菌性能,发现AgNPs@SiO_2-PD-AgNPs与KS联合可以对E. coli产生协同效应。协同效应产生的主要原因可能是:AgNPs@SiO_2-PD-AgNPs释放出的纳米银会和KS发生键合反应生成KS-纳米银复合物,导致纳米银释放出大量的Ag+增加了细胞膜的通透性,从而使得进入细菌内的Ag~+和KS比单独作用时进入胞内的抗菌剂增多,产生更强的抗菌性能,从而表现出协同抗菌效应。本研究基于新型纳米银复合材料与抗生素的联合抗菌性能实验探究了纳米银复合材料与特定抗生素联合用药的最佳组合和相关机制,为今后开发新型抗菌材料提供了新思路并为相关联合用药提供参考。  相似文献   

14.
Electrolytic manganese residue (EMR) is a type of solid waste discharged from the process that converts solid manganese carbonate of rhodochrosite into soluble Mn(II) and generates anode mud under electrolysis. The experimental material was a filtrate created by using distilled water as a dispersal agent for the EMR, followed by simple filtration. A calculated amount of sodium carbonate was added to recover the soluble Mn(II) via precipitation into manganese carbonate. Data showed that Mn concentration may be markedly decreased from 2069 to 36 mg/L, thereby reaching a recovery rate as high as 98%. Analysis demonstrated that precipitation of Mn(II) from a leached aqueous solution followed first-order kinetics. The findings indicate that the reaction rate constant decreased as temperature gradually rose and that its apparent activation energy Ea was ?10.48 kJ/mol.  相似文献   

15.
In the present study arsenic contaminated simulated water and groundwater was treated by the combination of biological oxidation of tri-valent arsenite [As (III)] to penta-valent arsenate [As (V)] in presence of Acidothiobacillus ferrooxidans bacteria and its removal by adsorptive filtration in a bioreactor system. This method includes the immobilisation of A.ferrooxidans on Granulated Activated Carbon (GAC) capable of oxidising ferrous [Fe (II)] to ferric [Fe (III)]. The Fe (III) significantly converts the As (III) to As (V) and ultimately removed greater than 95% by the bed of GAC, limestone, and sand. The significant influence of Fe (II) concentration (0.1–1.5?gL?1), flowrate (0.06–0.18?Lh?1), and initial As (III) concentration (100–1000?µgL?1) on the arsenic removal efficiency was investigated. The simulated water sample containing the different concentration of As (III) and other ions was used in the study. The removal of other co-existing ions present in contaminated water was also investigated in column study. The concentration of arsenic was found to be <10?µgL?1 which is below Maximum Contaminant Level (MCL) as per WHO in treated water. The results confirmed that the present system including adsorptive-filtration was successfully used for the treatment of contaminated water containing As (III) ions.  相似文献   

16.
As a biomass agricultural waste material, coconut shells were used for the preparation of high-quality modified activated carbon. Chemical modification of the surface of the prepared activated carbon is done by oxidation using H2O2 and HNO3, respectively. The surface area and pore volume of the coconut shells activated carbon are increased by the chemical modification, and followingly the removal of the metals is improved. The structural morphology and composition of the modified activated carbon coconut shells (MACCS) were evaluated by Fourier transform infrared (FTIR) spectra, thermogravimetric analysis–differential thermal analysis (TGA-DTA), scanning electron microscope (SEM), X-ray diffraction (XRD), surface area analysis (SAA), X-ray fluorescence (XRF), and carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis. The prepared MACCS has reasonably good chemical stability. The influence of solution pH, contact time, adsorbent dosage, adsorption temperature, initial metal concentrations, and interfering ions on the adsorption performance of the investigated ions onto the prepared sorbent was examined by a batch method. The selectivity sequence for sorption of Eu3+, Ce3+, Sr2+, and Cs+ ions on MACCS was found to be Eu3+?>?Ce3+?>?Sr2+?>?Cs+. The saturation capacities of MACCS for the studied metal ions were found to be 136.84, 85.55, 69.85, and 60.00?mg?g?1 for Eu3+, Ce3+, Sr2+, and Cs+ ions, respectively. The thermodynamic parameters, ΔH°, ΔS°, and ΔG° were also evaluated.  相似文献   

17.
This work was undertaken to ascertain the impact of different fluence rates of ultraviolet-B (UV-B) radiation on two cyanobacterial biofertilizers, Phormidium foveolarum and Nostoc muscorum, growing under copper toxicity. Copper (2 and 5?µmol?L?1) and high UV-B fluence rate (UV-BH; 1.0?µmol?m?2?s?1) decreased the growth, pigment content, photosynthetic oxygen yield, phosphate uptake, and acid phosphatase activity in both the strains analyzed after 24 and 72?h of experiments, and combined exposure further enhanced the toxic effects. Respiration and alkaline phosphatase activities were stimulated appreciably. The damaging effect was shown on the order on pigments: phycocyanin?>?chlorophyll a?>?carotenoids, and on photosystems: whole chain photosynthetic reaction?>?photosystem II?>?photosystem I. Partial recovery in the photosystem II activity in the presence of artificial electron donors; diphenyl carbazide (DPC), hydroxylamine (NH2OH), and manganese chloride (MnCl2) pointed out the interruption of electron flow on the oxidation side of photosystem II. Unlike UV-BH, low UV-B fluence rate (UV-BL; 0.1?µmol?m?2?s?1), rather than causing damaging effect partially, alleviated the toxic effects of Cu. This study suggests that the cyanobacterium P. foveolarum is less sensitive against UV-BH and excess Cu (2 and 5?µmol?L?1), thus P. foveolarum may be used as a biofertilizer for sustainable agriculture.  相似文献   

18.
Maximum substrate and cosubstrate affinity, as judged by the Michaelis constant (K M ), of NADP+-dependent isocitrate dehydrogenase of pig heart (purchased from Boehringer, Mannheim, FRG) is attained at 37°C. If K M -values of substrate (Isocitrate, IC) and cosubstrate (NADP+) of NADP+-dependent isocitrate dehydrogenase (ICDH) of the white dorsal muscle of Idus idus L. is plotted against the experimental temperature (VT), W-shaped curves result. With increasing adaptation temperature (AT), there is a shift to increasing VT. It is suggested that the W-shaped curves are due either to the simultaneous presence of two multiple forms of the enzyme, or to the reversible temperature-dependent interconversion of one protein species.  相似文献   

19.
This investigation was carried out to determine the hydrogeochemical characteristics of the Kirkgeçit and Ozancik hot springs. The study areas are located northeast and southwest of the town of Çan, Çanakkale. During the investigation, geological maps of the hot springs and its surroundings were prepared, and hot waters and rock samples were collected from the study sites. The Paleogene–Neogene aged andesite, trachyandesite, andesitic tuff, silicified tuff and tuffites form the basement rocks in the Ozancik hot spring area. In the Kirkgeçit hot spring area, there are Lower Triassic aged mica and quartz schists at the basement rocks. The unit is covered by limestones and marbles of the same age. They are overlain by Quaternary alluvial deposits. A chemical analysis of the Kirkgeçit hot water indicates that it is rich in SO4 2– (1200.2 mg L–1), Cl (121.7 mg L–1), HCO3 (32.5 mg L–1), Na+ (494 mg L–1), K+ (30.2 mg L–1), Ca2+ (102 mg L–1), Mg2+ (15.2 mg L–1), and SiO2 (65.22 mg L–1). Chemical analysis of the Ozancik hot water indicates that it is rich in SO4 2– (575 mg L–1), Cl (193.2 mg L–1), HCO3 (98.5 mg L–1), Na+ (315 mg L–1), K+(7.248 mg L–1), Ca2+ (103 mg L–1), Mg2+ (0.274 mg L–1), and SiO2(43.20 mg L–1). The distribution of ions in the hot waters on the Schoeller diagram has an arrangement of r(Na++K+)>rCa2+>rMg2+ and r(SO4 2–)>rCl>r(HCO3 ). In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination. The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organisation and Turkish Standards. The use and the effects of the hot water on human health are also discussed in the paper.  相似文献   

20.
Linear relationships between logarithms of octan‐1‐ol/water partition coefficients (Kd,oct), aqueous activity coefficients (yaq) and extrapolated RP HPLC capacity factors (k‘w) are found for four types of aromatic hydrocarbons (alkylbenzenes and poly‐chlorinated benzenes, ‐naphthalenes and ‐biphenyls).

Both log K,d,oct and logk‘w increase with the increasing number of chlorine or methyl‐ene substituents. These increases of log K,d,oct and log k‘w are proportional and almost independent of the parent compound. In addition, these increases are linear to increases of logyaq. The slopes of logk‘w‐logyaq and log K,d,oct‐logvaq relationships deviate significantly from 1.0. This suggests that the activity coefficients of the test compounds in both octan‐1‐ol and in the stationary phase of the RP column increase after substitution of aromatic compounds with methylene or chlorine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号