首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
干扰素生产废水处理试验及生物相分析   总被引:1,自引:0,他引:1  
采用水解酸化与生物接触氧化组合工艺对干扰素生产废水进行试验研究,并考察其处理效果,观察生物接触氧化工艺中生物相。结果表明:该组合工艺对出水COD的去除率大于90%,出水COD低于40 mg/L,且运行稳定后生物接触氧化槽中污泥浓度较低。对生物相的显微镜观察可知生物接触氧化槽中生物相种类以藻类为主。  相似文献   

2.
煤加压气化废水中含有多种难降解有机物,其成分因原煤性质和气化工艺的不同而复杂多变,属于难处理工业废水,目前主要的处理方法有臭氧氧化法、活性炭吸附法、Fenton试剂法、超声空化效应等,文章综合比较各种方法的优缺点,针对煤加压气化废水的特点,利用不同类型的无机混凝剂和Fenton试剂对气化废水进行了混凝-Fenton法处理,并确定了最佳处理条件。在最佳条件下,COD、BOD5、氨氮、挥发酚和色度的平均去除率分别达到81.27%、76.87%、72.45%、86.42%和99.9%,BOD5与COD的比值由0.34提高到0.45。在对处理前后的废水的液-质联用谱图分析得知,处理后苯酚的去除率约为97.6%左右。结果表明煤加压气化废水经过混凝-Fenton法联合处理后出水能达到国家标准,并且成本相对较低,具有广阔的实际应用前景。  相似文献   

3.
高效絮凝反应器处理生活污水试验研究   总被引:2,自引:1,他引:2  
王武权  栾兆坤 《环境化学》1997,16(6):585-589
本文采用高效絮凝模拟反应器进一步对实际生活污水进行连续运行处理试验,结果表明,直接絮凝沉淀处理后的出水浊度去除率和COD去除率分别达到93.4%和79.2%,可完全达到排放标准。絮凝处理后再经纤维过滤柱过滤处理,可控制出水浊度在1.0NTU以下,COD去除率增加5.0 ̄7.0%,试验结果进一步验证了这种高效絮凝装置具有高效处理效能及实际工程应用推广价值。  相似文献   

4.
高浓度有机废水深度氧化治理技术进展   总被引:4,自引:0,他引:4  
介绍处理废水中生物难降解有机污染物的深度氧化技术———湿式空气氧化法、超临界水氧化法、复合空气氧化法、光化学氧化法及其相应的催化氧化法,评价这些方法的特点及应用前景。  相似文献   

5.
物化预处理-水解酸化-接触氧化法处理选矿废水   总被引:1,自引:0,他引:1  
对某浮选厂浮选废水进行混凝沉淀+活性碳吸附预处理,然后进入生化系统,厌氧池、好氧池停留时间为10h.结果证明:进水COD为400~700mg/L,出水74~145 mg/L,去除率达75.8%以上,首次成功地将生物法应用到铅锌选矿废水的处理,若对该工艺进行适当调整,完全可以使出水达到排放或回用标准.  相似文献   

6.
颜料,油墨废水物化,生化法综合治理技术   总被引:3,自引:0,他引:3  
本文详细阐述了颜料油墨废水的物化,生化法综合治理技术在其在工程 的实际应用,针对该行业废水的特点,该技术可以有效去除水中的悬浮物,有机物,色度及有毒有害物质使出水达标排放。该工程于1998年正式投产运行,成为国内首例成功运转达标的颜料,油墨废水治理工程。  相似文献   

7.
Since eutrophication has become increasingly severe in China, nitrogen and phosphorous have been the concern of wastewater treatment, especially nitrogen removal. The stabilization of the intelligent control system and nitrogen removal efficiency were investigated in a pilot-scale aerobic-anoxic sequencing batch reactor (SBR) with a treatment capacity of 60 m3/d. Characteristic points on the profiles of dissolved oxygen (DO), pH, and oxidation reduction potential (ORP) could exactly reflect the process of nitrification and denitrification. Using the intelligent control system not only could save energy, but also could achieve advanced nitrogen removal. Applying the control strategy water quality of the effluent could stably meet the national first discharge standard during experiment of 10 months. Even at low temperature (t = 13°C), chemical oxygen demand (COD) and total nitrogen (TN) in the effluent were under 50 and 5 mg/L, respectively.  相似文献   

8.
Wet air oxidation (WAO) is one of effective technologies to eliminate hazardous, toxic and highly concentrated organic compounds in the wastewater. In the paper, multi-walled carbon nanotubes (MWCNTs), functionalized by O3, were used as catalysts in the absence of any metals to investigate the catalytic activity in the catalytic wet air oxidation (CWAO) of phenol, nitrobenzene (NB) and aniline at the mild operating conditions (reaction temperature of 155°C and total pressure of 2.5 MPa) in a batch reactor. The MWCNTs were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), gas adsorption measurements (BET), fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The functionalized MWCNTs showed good catalytic performance. In the CWAO of phenol over the functionalized MWCNTs, total phenol removal was obtained after 90 min run, and the reaction apparent activation energy was ca. 40 kJ·mol-1. The NB was not removed in the CWAO of single NB, while ca. 97% NB removal was obtained and 40% NB removal was attributed to the catalytic activity after 180 min run in the presence of phenol. Ca. 49% aniline conversion was achieved after 120 min run in the CWAO of aniline.  相似文献   

9.
In this study, kinetics of photocatalytic degradation of phenolic wastewater in immobilized photocatalytic reactor was investigated. Immobilization of titanium dioxide (TiO2) nano powders on concrete surfaces were accomplished with epoxy concrete sealer. Kinetics of photocatalytic reactions has been proposed to follow the Langmuir–Hinshelwood model in different initial phenol concentration, pH, and UV lamp intensity. First-order reaction kinetics with respect to the pollutant concentration was obtained for the reaction. Effect of UV lamp intensity showed that kinetic constants were proportional to the power of 0.73–1 of the photonic flow. In all cases kinetic constant increases as pH of the system reached up to 12 units. Several reaction intermediates were identified using the GC/Mass analysis. Products at the initial stage of the reaction were aromatic compounds, contained hydroquinone, benzoquinone, and catechol. These intermediates underwent further photocatalytic oxidation to aliphatic compounds and finally into CO2 and H2O after 4?h. Kinetic constants of intermediate compounds were determined using mathematical–chemical equations and nonlinear regression. Data showed that the differences between the mathematical model and Langmuir–Hinshelwood model for the kinetic constant was less than 5%.  相似文献   

10.
Actual pharmaceutical wastewater was treated using a combined ultrasonic irradiation (US) and iron/coke internal electrolysis (Fe/C) technology. A significant synergetic effect was observed, showing that ultrasonic irradiation dramatically enhanced the chemical oxygen demand (COD) removal efficiencies by internal electrolysis. The effects of primary operating factors on COD removal were evaluated systematically. Higher ultrasonic frequency and lower pH values as well as longer reaction time were favorable to COD removal. The ratio of biochemical oxygen demand (BOD) and COD (B/C) of the wastewater increased from 0.21 to 0.32 after US-Fe/C treatment. An acute biotoxicity assay measuring the inhibition of bioluminescence indicated that the wastewater with overall toxicity of 4.3 mg-Zn2+·L-1 was reduced to 0.5 mg-Zn2+·L-1 after treatment. Both the raw and the treated wastewater samples were separated and identified. The types of compounds suggested that the increased biodegradability and reduced biotoxicity resulted mainly from the destruction of N,N-2 dimethyl formamide and aromatic compounds in the pharmaceutical wastewater.  相似文献   

11.
二段生物接触氧化法处理含硫废水的中试研究   总被引:3,自引:0,他引:3  
用二段生物接触氧化法探索炼油过程中所产生的含硫废水的处理新方法. 结果表明:经此工艺处理后的出水 C O D、氨氮、硫化物和酚的质量浓度ρ分别为266 .9 mg/ L、82 .85 mg/ L、1 .18 mg/ L 和1 .43 mg/ L,相应的去除率分别为86 .3 % 、40 % 、92 .7 % 和99 .3 % ,出水水质达到国家三级排放标准. 进出水水质的变化曲线表明,生物接触氧化法处理含硫废水对进水水质变化的适应能力比较强,出水水质比较稳定,显示了二段接触氧化法处理含硫废水的可行性  相似文献   

12.
采用絮凝—接触氧化法处理酿酒行业废水   总被引:7,自引:0,他引:7  
采用絮凝-接触氧化法处理酿酒行业废水,原废水CODcr浓度为1627-2334mg/L,SS浓度为2095-2301mg/L,BOD5浓度为981-1005mg/L,色度为80-110倍,用絮凝-接触氧化法处理后,CODer浓度为280-295mg/L,SS浓度为178-199mg/L,CODcr浓度为145-150mg/L,色度为20-25倍,CODcr平均去除率为85%。悬浮物平均去除率为91%,BOD5平均去除率为85%,色度平均去除率为77%,各项指标符合国家排废标准。  相似文献   

13.
磷酸三丁酯(TBP)对苯酚的络合萃取   总被引:14,自引:0,他引:14  
基于可逆络合反应的萃取分离方法对极性有机物稀溶液具有高效性和高选择性.本文系统进行了磷酸三丁酯(TBP)对苯酚稀溶液的络合萃取的实验研.负载有机相的红外谱图分析表明,TBP与苯酚通过氢键缔合形成萃合物.以TBP-煤油为萃取剂对工业含酚废水进行了萃取平衡和错流萃取实验.讨论了其应用的可能性及开发新的有效的络合萃取剂的途径.  相似文献   

14.
● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting CODeff in wastewater was proposed. ● The CODeff prediction performances of the three models in the paper were compared. ● The CODeff prediction effects of different models in other studies were discussed. The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination (R2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.  相似文献   

15.
• Submerged arc plasma was introduced in terms of wastewater treatment. • Ozone oxidation was coupled with submerged arc plasma system. • Ozone was converted into O and O2 by submerged arc plasma. • Decomposition rate was accelerated by submerged arc plasma. • Introduction of ozone led to significant increase in mineralization. Submerged arc plasma technology was assessed for the removal of phenols from wastewater. The OH radicals generated from the boundary between the plasma and waste solution were considered as a significant factor on the degradation reaction. In this study, the effects of highly energetic electrons released from the submerged arc plasma were mainly studied. The highly energetic electrons directly broke the strong chemical bond and locally increased the reaction temperatures in solution. The effects of the submerged-arc plasma on the decomposition of phenol are discussed in terms of the input energy and initial concentration. The single use of submerged arc plasma easily decomposed the phenol but did not increase the mineralization efficiency. Therefore, the submerged arc plasma, coupled with the ozone injection, was investigated. The submerged arc plasma combined with ozone injection had a synergic effect, which led to significant improvements in mineralization with only a small increase in input energy. The decomposition mechanism of phenol by the submerged arc plasma with the ozone was analyzed.  相似文献   

16.
Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.
  相似文献   

17.
Vinasse is a colored recalcitrant wastewater of the distillery industry. The aim of this work was to study the use of Phanerochaete chrysosporium for the vinasse degradation under two different growth conditions. Vinasse was treated by P. chrysosporium in a liquid inoculum form, during 32 days at room temperature (approximately 25 degrees C) and at 39 degres C. Chemical oxygen demand (COD), total phenol concentration and color removal were measured and there8 was a decrease in COD, phenolic concentration and color of 47.48%, 54.72% and 45.10% respectively, at room temperature and a decrease in 54.21%, 59.41% and 56.8 1% respectively at 39 degrees C.  相似文献   

18.
褚兆晶  徐婷  郭景  安娟  刘俊琢  胡清静 《生态环境》2010,19(8):1956-1959
以丙烯腈废水为研究对象,进行废水预处理对提高废水的可生化性和后续好氧生物处理效率的研究。实验采用电化学氧化法对难降解丙烯腈废水处理效果进行了单因子试验,分析了电压、电解时间、氯离子质量浓度对废水色度及CODcr的去除效果,以及对废水可生化性的影响。实验结果显示,电化学氧化法在电压5V,pH为3.00,反应时间6h,搅拌速率为250r·min^-1,氯离子质量浓度为5000mg·L^-1的条件下,对CODCr1156mg·L^-1,色度512倍的丙烯腈废水中CODcr去除率达到60%,色度的去除率达到90%,并使废水的可生化性明显提高。CODCr去除率和色度去除率随电解时间、电压增加而增大,电解时间达5h、电压大于5V以后使水电解副反应更容易发生,对有机物的降解速率减小,同时随电解时间延长,能耗逐渐增大,处理成本增大;氯离子质量浓度对电解效果影响较大,适量增大氯离子质量浓度,可以提高CODCr的去除率。  相似文献   

19.
吸附—催化氧化—絮凝法联合处理造纸废水   总被引:14,自引:0,他引:14  
采用吸附-催化氧化-絮凝法联合处理造纸废水,讨论了废水通过炉渣柱的滤速,在絮凝过程中Al2(SO4)3的加入量及催化氧化反应中溶液的pH值,铁屑的加入量,H2O2的加入量等主要因素对废水中COD去除率的影响,结果表明,COD,SS主要污染物去除率达97.0%和95.3%,各项指标超过一级排放标准,水质可以完全回收利用,为造纸废水的处理提供了新的技术方案。  相似文献   

20.
酸性矿山废水治理过程中产生二次污染的研究   总被引:1,自引:0,他引:1  
在易氧化的硫化物矿物尾矿上叠加生活污水或乙酰丙酮等阻断尾矿向酸性矿山废水转移过程中,引发了硫化物矿物氧化产生的还原性硫与有机污水中一些水溶性有机物以及乙酰丙酮的作用,生成以CS_2为主的新的二次污染物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号