首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The exploitation of microhabitats is widely considered to increase biodiversity in marine ecosystems. Although intertidal hermit crabs and gastropods may inhabit the same shell type and shore level, their microhabitat may differ depending on the state of the tide. On the south coast of Wales the hermit crab Pagurus bernhardus mainly inhabits the shells of Nucella lapillus (84%). Hermit crab shells had a significantly different encrusting community compared with live N. lapillus shells. At low tide the live gastropods were found on exposed rock surfaces whereas hermit crabs were restricted to tidal pools. Communities encrusting live gastropod shells were characterised by lower species richness and abundance compared with shells inhabited by hermit crabs (12 species found in total). A greater abundance and richness of epibionts was recorded from both shell types during the summer compared with winter. Differences in community composition between shell occupant types were attributed to microhabitats used by gastropods and hermit crabs and the associated desiccation pressures, rather than competitive interactions or shell characteristics. This contradicts earlier studies of subtidal shells where biological processes were considered more important than physical factors in controlling species abundance and richness patterns. The use of rockpool microhabitats by hermit crabs increases the biodiversity of rocky shores, as some species commonly found on hermit-crab-inhabited shells were rare in other local habitats.Communicated by J.P. Thorpe, Port Erin  相似文献   

2.
Within the Caribbean millions of queen conch (Strombus gigas Linnaeus) are harvested each year and shells discarded randomly or as middens. Fish use of discarded conch shells was investigated in four different habitat types: sand, seagrass beds, mangrove forests, and coral reefs. The study was carried out in the waters off South Caicos, Turks and Caicos Islands (TCI), between October 2003 and January 2004. The density of discarded shells was greatest near coral reefs; however, the percentage of shells occupied by adult fish was higher in isolated shells on sand and in mangrove habitats. Juvenile fish also showed a preference for sheltering in conch shells relative to other microhabitat types on sandy plains and in mangrove and seagrass habitats. Differences in use of single shells by fish in different habitats were attributed to differences in piscivore abundance and habitat complexity. Although not all isolated shells were occupied by fish, all conch middens deposited by fishermen had fish inhabitants. Examination of fish use of conch middens in three habitat types and conch piles of one, three, and five shells constructed on sand found both fish diversity and abundance increased on conch middens of increasing size. This study suggests that disposal of conch shells as large middens in habitats of low complexity will increase the amount of shelter present and may enhance fish populations in these habitats.Communicated by J.P. Grassle, New Brunswick  相似文献   

3.
Delimiting communities in marine habitats is difficult because co-occurring species often have different life histories and the life stages experience the environment at different spatial scales. The habitat of a particular community is embedded within a larger habitat or ecosystem with many species shared between the focal community and the larger system. Pen shells (Atrina rigida) are large bivalves that, once the mollusk dies, provide shelter for motile species and hard substrate for settling larval invertebrates and egg-laying fishes. In St. Joseph’s Bay, Florida (29°45′N, 85°15′W), pen shells are the most abundant source of hard substrate, especially inside sea grass (Thalassia testudinum) beds, where they reach densities of 0.1–4.0 m−2. This study, which was conducted from May to August 2005, measured the overlap in species densities between dead pen shells and the surrounding sea grass communities at eight sites to determine the discreteness of the pen shell communities. Of the 70-epibenthic taxa recorded, 66% were found on the pen shells but not in the surrounding sea grass habitat. Community structure, which varied among shells within sites and among the eight sites, could be related to sea grass characteristics such as blade density and length either directly (e.g., inhabitants of pen shells directly benefit from the surrounding sea grass) or indirectly (e.g., pen shells and sea grass both benefit from similar factors such as current and nutrients). Pen shells were randomly distributed at several spatial scales within the 15 × 15 m sites as were many motile species. Two exceptions were the shrimp, Palaemon floridanus and the amphipod, Dulichella appendiculata, whose distributions were clumped. Most of the sessile species had clumped distributions, tending to be very abundant when they were present. These pen shell communities provide an opportunity for experimental studies of factors affecting species diversity on small, discrete, naturally occurring habitats. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The transmission of free-living trematode stages is mediated by various environmental factors, of which the presence of ambient organisms within the host space is a potential major determinant. In two laboratory mesocosm experiments, we investigated the influence of four intertidal rocky shore species on transmission success of cercariae of the digenean trematodes Echinostephilla patellae (encysting in the tissue of blue mussels Mytilus edulis) and Parorchis acanthus (encysting on mussel shells). Encystment success of both parasite species was significantly lower in the presence of test organisms when compared to controls. Observations revealed that barnacles Austrominius modestus actively filtered cercariae, whereas the larvae were obstructed by the seaweeds Corallina officinalis and Fucus serratus. Anemones Actinia equina both physically disturbed and consumed cercariae. In a further laboratory experiment, grazing gastropods (Littorina littorea, Patella vulgata, and Gibbula umbilicalis) were found to significantly reduce the numbers of P. acanthus metacercariae in artificially prepared dishes by ingestion of cysts. Our results suggest that non-host organisms may play a key role in regulating the transmission of free-living trematode stages in rocky shore ecosystems, which is especially important with regard to the relative diversity and density of species in these habitats. The findings also emphasize the need to include parasites into marine food webs, since cercariae seem to be consumed by certain organisms to a considerable extent and could possibly represent an important energy source.  相似文献   

5.
Habitat-forming organisms often determine the structural properties and food resources available to a wide diversity of associated mobile species. Sessile invertebrate assemblages on marine hard substrates support an abundant fauna of mobile invertebrates whose associations with traits of their host assemblages are poorly known. To assess how changes to habitat-forming species are likely to affect their associated mobile fauna, the relationships between abundance, diversity and composition of mobile invertebrates and the diversity, cover and composition of the sessile assemblages they use as habitat were quantified in Sydney Harbour, Australia (33°50′S, 151°16′E). Similar compositions of sessile species were more likely to share a similar composition of mobile species, but univariate measures of the habitat (percent cover, species and functional diversity, prevalence of non-indigenous species) did not predict variation in associated mobile assemblages. These results demonstrate that in this habitat it is difficult to predict the diversity of marine assemblages based on common surrogate measures of biodiversity.  相似文献   

6.
Because behavioral variation within and among populations may result from ecological, social, genetic and phenotypic differences, identifying the mechanism(s) responsible is challenging. Observational studies typically examine social learning by excluding ecological and genetic factors, but this approach is insufficient for many complex behaviors associated with substantial environmental variation. Indian Ocean bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia show individual differences in foraging tactics, including possible tool use with marine sponges and social learning may be responsible for this diversity. However, the contributions of ecological factors to the development of these foraging tactics were not previously investigated. Here, we determined the relationship between ecological variables and foraging tactics and assessed whether differences in habitat use could explain individual differences in foraging tactics. We monitored 14 survey zones to identify how foraging tactics were spatially distributed and matched behavioral data to the ecological variables within each zone. Three of four foraging tactics were significantly correlated with ecological characteristics such as seagrass biomass, water depth, presence of marine sponges and season. Further, individual differences in habitat use were associated with some tactics. However, several tactics overlapped spatially and previous findings suggest demographic and social factors also contribute to the individual variation in this population. This study illustrates the importance of environmental heterogeneity in shaping foraging diversity and shows that investigating social learning by ruling out alternative mechanisms may often be too simplistic, highlighting the need for methods incorporating the relative contributions of multiple factors.  相似文献   

7.
The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat may not have been limiting the macroinvertebrate communities to begin with. Stream restoration to support trout fisheries has strong public acceptance in Finland and will likely continue to increase in the near future. Therefore, more effort should be placed on assessing restoration success from a biodiversity perspective using multiple organism groups in both stream and riparian ecosystems.  相似文献   

8.
Urban coastal wetlands and adjoining coves and embayments can provide habitat for significant numbers of waterbirds, despite being subject to high levels of stressors from human activities. Yet to date little emphasis has been placed on identifying these areas and prioritizing them for conservation. In this study I outline a three-step process to identify and prioritize local sites for conservation using waterbird abundance and diversity and an index of the risk to a site from marine development, and apply it to a series of urban coastal sites in two North Atlantic estuaries located in the northeast US. By combining waterbird abundance and species richness with the risk from marine development I generated a ranked list of sites with the highest listed sites having high bird diversity and low risk from development. From this list individual sites can be prioritized for conservation, and various protection scenarios can be evaluated and compared. For example, 7 of the top 10 ranked sites in Boston Harbor, combined with sites already protected under local, state, or federal statutes, represented over half of the total bird diversity in the Harbor. Similarly, in Narragansett Bay 6 of the top 10 sites when combined with sites already protected represent 48.8% of the Bay’s bird diversity. Formally protecting these sites, all of which are at relatively low risk from marine development, could result in the conservation of considerable waterbird habitat at low economic cost (i.e., from loss of development potential). Other ranking scenarios (by bird diversity alone, or by risk from marine development) were also evaluated and compared to the combined ranking. Identification of sites with high bird diversity and low risk from development could provide important information for local land acquisition groups and planning boards when considering options for the conservation of urban coastal habitats.  相似文献   

9.
Kerswell AP 《Ecology》2006,87(10):2479-2488
Species richness patterns are remarkably similar across many marine taxa, yet explanations of how such patterns are generated and maintained are conflicting. I use published occurrence data to identify previously masked latitudinal and longitudinal diversity gradients for all genera of benthic marine macroalgae and for species in the Order Bryopsidales. I also quantify the size, location, and overlap of macroalgal geographic ranges to determine how the observed richness patterns are generated. Algal genera exhibit an inverse latitudinal gradient, with biodiversity hotspots in temperate regions, while bryopsidalean species reach peak diversity in the tropics. The geographic distribution of range locations results in distinct clusters of range mid-points. In particular, widespread taxa are centered within tight latitudinal and longitudinal bands in the middle of the Indo-Pacific and Atlantic Oceans while small-ranged taxa are clustered in peripheral locations, suggesting that variation in speciation and extinction are important drivers of algal diversity patterns. Hypotheses about factors that regulate diversity contain underlying assumptions about the size and location of geographic ranges, in addition to predictions as to why species numbers will differ among regions. Yet these assumptions are rarely considered in assessing the validity of the prevailing hypotheses. I assess a suite of hypotheses, suggested to explain patterns of marine diversity, by comparing algal-richness patterns in combination with the size and location of algal geographic ranges, to the richness and range locations predicted by these hypotheses. In particular, the results implicate habitat areas and ocean currents as the most plausible drivers of observed diversity patterns.  相似文献   

10.
The design of marine reserves is complex and fraught with uncertainty. However, protection of critical habitat is of paramount importance for reserve design. We present a case study as an example of a reserve design based on fine-scale habitats, the affinities of exploited species to these habitats, adult mobility, and the physical forcing affecting the dynamics of the habitats. These factors and their interaction are integrated in an algorithm that determines the optimal size and location of a marine reserve for a set of 20 exploited species within five different habitats inside a large kelp forest in southern California. The result is a reserve that encompasses approximately 42% of the kelp forest. Our approach differs fundamentally from many other marine reserve siting methods in which goals of area, diversity, or biomass are targeted a priori. Rather, our method was developed to determine how large a reserve must be within a specific area to protect a self-sustaining assemblage of exploited species. The algorithm is applicable across different ecosystems, spatial scales, and for any number of species. The result is a reserve in which habitat value is optimized for a predetermined set of exploited species against the area left open to exploitation. The importance of fine-scale habitat definitions for the exploited species off La Jolla is exemplified by the spatial pattern of habitats and the stability of these habitats within the kelp forest, both of which appear to be determined by ocean microclimate.  相似文献   

11.
Increasing human populations along marine coastlines has lead to increasing urbanization of the marine environment. Despite decades of investigations on terrestrial ecosystems, the effect of urbanization on marine life is not well understood. Riprap is the rocky rubble used to build jetties, breakwaters, and armored shorelines. Roughly 30% of the southern California shoreline supports some form of riprap, while 29% of the shoreline is natural rocky substrate. Astonishingly few studies have investigated this anthropogenic rocky habitat even though it rivals a natural habitat in area on a regional scale along a coastline that has been extensively studied. In this study, I compared the diversity and community structure of exposed rocky intertidal communities on four riprap and four natural sites in southern California. I ask the following questions: (1) does diversity or community composition differ between intertidal communities on riprap and natural rocky habitats in southern California, (2) if so, which organisms contribute to those differences, (3) which physical factors are contributing to these differences, and (4) do riprap habitats support higher abundances of invasive species than natural habitats? On average, riprap and natural rocky habitats in wave exposed environments in southern California did not differ from each other in diversity or community composition when considering the entire assemblage. However, when only mobile species were considered, they occurred in greater diversity on natural shores. These differences appear to be driven by wave exposure. The presence of invasive species was negligible in both natural and riprap habitats.  相似文献   

12.
Human-made structures are increasingly found in marine coastal habitats. The aim of the present study was to explore whether urban coastal structures can affect the genetic variation of hard-bottom species. We conducted a population genetic analysis on the limpet Patella caerulea sampled in both natural and artificial habitats along the Adriatic coast. Five microsatellite loci were used to test for differences in genetic diversity and structure among samples. Three microsatellite loci showed strong Hardy–Weinberg disequilibrium likely linked with the presence of null alleles. Genetic diversity was significantly higher in natural habitat than in artificial habitat. A weak but significant differentiation over all limpet samples was observed, but not related to the type of habitat. While the exact causes of the differences in genetic diversity deserve further investigation, these results clearly point that the expansion of urban structures can lead to genetic diversity loss at regional scales.  相似文献   

13.
In order to properly determine the efficacy of marine protected areas (MPAs), a seascape perspective that integrates ecosystem elements at the appropriate ecological scale is necessary. Over the past four decades, Hawaii has developed a system of 11 Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discrete sampling units. Digital benthic habitat maps for all MLCDs and adjacent habitats were used to evaluate the efficacy of existing MLCDs using a spatially explicit stratified random sampling design. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that a number of fish assemblage characteristics (e.g., species richness, biomass, diversity) vary among habitat types, but were significantly higher in MLCDs compared with adjacent fished areas across all habitat types. Overall fish biomass was 2.6 times greater in the MLCDs compared to open areas. In addition, apex predators and other species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations within their boundaries. Habitat type, protected area size, and level of protection from fishing were all important determinates of MLCD effectiveness with respect to their associated fish assemblages. Although size of these protected areas was positively correlated with a number of fish assemblage characteristics, all appear too small to have any measurable influence on the adjacent fished areas. These protected areas were not designed for biodiversity conservation or fisheries enhancement yet still provide varying degrees of protection for fish populations within their boundaries. Implementing this type of biogeographic process, using remote sensing technology and sampling across the range of habitats present within the seascape, provides a robust evaluation of existing MPAs and can help to define ecologically relevant boundaries for future MPA design in a range of locations.  相似文献   

14.
Organotin compounds have been widely used as antifouling paints for ships and fishing nets since the 1960s and have thus been released into marine environments. Aquatic invertebrates, particularly marine gastropods, are extremely sensitive to organotin compounds such as tributyltin (TBT) and triphenyltin (TPT) and undergo changes in sexual identity in response to exposure. This worldwide phenomenon is one of the worst consequences of pollution by man-made chemicals and has led to the ban of such compounds in antifouling paints in a number of countries, although organotin compounds still exist in the environment. So far, very low-concentrations of TBT or TPT have been shown to induce imposex (superimposition of male genitalia on female) in marine gastropods. Although the imposex induction mechanism has been controversial for many years, it was recently reported that TBT and TPT are potent and efficacious activators of retinoid X receptor (RXR), a member of the nuclear receptor superfamily. In this review, I discuss the involvement of RXR in the development of gastropod imposex. Physical and Chemical Impacts on Marine Organisms, a Bilateral Seminar Italy–Japan held in November 2004  相似文献   

15.
Genetic diversity is a key factor for population survival and evolution. However, anthropogenic habitat disturbance can erode it, making populations more prone to extinction. Aiming to assess the global effects of habitat disturbance on plant genetic variation, we conducted a meta-analysis based on 92 case studies obtained from published literature. We compared the effects of habitat fragmentation and degradation on plant allelic richness and gene diversity (equivalent to expected heterozygosity) and tested whether such changes are sensitive to different life-forms, life spans, mating systems, and commonness. Anthropogenic disturbance had a negative effect on allelic richness, but not on gene diversity. Habitat fragmentation had a negative effect on genetic variation, whereas habitat degradation had no effect. When we examined the individual effects in fragmented habitats, allelic richness and gene diversity decreased, but this decrease was strongly dependent on certain plant traits. Specifically, common long-lived trees and self-incompatible species were more susceptible to allelic richness loss. Conversely, gene diversity decreased in common short-lived species (herbs) with self-compatible reproduction. In a wider geographical context, tropical plant communities were more sensitive to allelic richness loss, whereas temperate plant communities were more sensitive to gene diversity loss. Our synthesis showed complex responses to habitat disturbance among plant species. In many cases, the absence of effects could be the result of the time elapsed since the disturbance event or reproductive systems favoring self-pollination, but attention must be paid to those plant species that are more susceptible to losing genetic diversity, and appropriate conservation should be actions taken.  相似文献   

16.
C. McClain  M. Rex 《Marine Biology》2001,139(4):681-685
Bathymetric gradients in body size are the most well-known patterns of geographic variation in deep-sea organisms. The causes of size-depth relationships remain uncertain, but most have been attributed to rates of nutrient input. Chapelle and Peck (1999, Nature 399:114-115) recently hypothesized that body size in marine invertebrates is a function of dissolved oxygen concentration. We tested this hypothesis by using quantile regression techniques to assess the relationship of dissolved oxygen levels to maximum size in deep-sea turrid gastropods collected from the North Atlantic. Relationships were examined for a group of nine turrid species and within the abundant lower bathyal species Benthomangelia antonia (Dall, 1881). We controlled the analysis for depth because size in deep-sea gastropods varies bathymetrically. When the effects of depth are accounted for statistically, maximum size in B. antonia increases with increasing levels of dissolved oxygen. In turrids as a group, both depth and oxygen appear to explain significant proportions of the variance in maximum size. These findings suggest that a suite of factors, including dissolved oxygen concentration, may influence maximum size in deep-sea organisms.  相似文献   

17.
18.
Detailed knowledge on species–habitat relationships is of crucial importance for the understanding of processes in marine ecosystems. Being top-predators, birds are important bio-indicators for marine systems. The aim of this study was to elucidate precise information on foraging habitat use and foraging times of oystercatchers (Haematopus ostralegus) on wide tidal flats using global positioning system (GPS) data loggers. The study was conducted to collect hints for the negative population trends in oystercatchers in the Wadden Sea. It is the first time that GPS technique has been used in a shorebird species. Although oystercatchers are known to exhibit foraging site fidelity, a number of individuals visited multiple sites. Foraging trips at night were longer, and the targeted sites were further away than those used during the day. These patterns were likely to be caused by higher risks of clutch predation by avian predators during the day that led adults to reduce their absence to defend their clutches. Our methodological approach enabled the subtle spatio-temporal patterns of habitat use to be determined on a very fine spatio-temporal scale. We suggest further potential studies using GPS data loggers that may help to reveal the reasons for the current declines in oystercatcher populations in the German Wadden Sea.  相似文献   

19.
Mobile species may actively seek refuge from stressful conditions in biogenic habitats on rocky shores. In Hong Kong, the upper intertidal zone is extremely stressful, especially in summer when organisms are emersed for long periods in hot desiccating conditions. As a result, many species migrate downshore between winter and summer to reduce these stressful conditions. The littorinids Echinolittorina malaccana and E. vidua, for example, are found on open rock surfaces high on the shore in winter but the majority migrate downshore in summer to the same tidal height as a common barnacle, Tetraclita japonica. In the laboratory, where environmental conditions could be controlled to approximate those occurring on the shore, we tested whether the downshore migration allowed littorinids to select barnacles as biogenic habitats to reduce stress and if this behaviour varied between seasons. In summer, littorinids demonstrated a strong active preference for the barnacles, which was not observed in the cool winter conditions, when animals were found on open rock surfaces even when barnacles were present. Littorinids, therefore, only actively select biogenic habitats during the summer in Hong Kong when they migrate downshore, suggesting that such habitats may play an important, temporal, role in mitigating environmental stress on tropical shores.  相似文献   

20.
Wind energy development is the most recent of many pressures on upland bird communities and their habitats. Studies of birds in relation to wind energy development have focused on effects of direct mortality, but the importance of indirect effects (e.g., displacement, habitat loss) on avian community diversity and stability is increasingly being recognized. We used a control-impact study in combination with a gradient design to assess the effects of wind farms on upland bird densities and on bird species grouped by habitat association (forest and open-habitat species). We conducted 506 point count surveys at 12 wind-farm and 12 control sites in Ireland during 2 breeding seasons (2012 and 2013). Total bird densities were lower at wind farms than at control sites, and the greatest differences occurred close to turbines. Densities of forest species were significantly lower within 100 m of turbines than at greater distances, and this difference was mediated by habitat modifications associated with wind-farm development. In particular, reductions in forest cover adjacent to turbines was linked to the observed decrease in densities of forest species. Open-habitat species’ densities were lower at wind farms but were not related to distance from turbines and were negatively related to size of the wind farm. This suggests that, for these species, wind-farm effects may occur at a landscape scale. Our findings indicate that the scale and intensity of the displacement effects of wind farms on upland birds depends on bird species’ habitat associations and that the observed effects are mediated by changes in land use associated with wind-farm construction. This highlights the importance of construction effects and siting of turbines, tracks, and other infrastructure in understanding the impacts of wind farms on biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号