首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Savannas commonly consist of a discontinuous cover of overstory trees and a groundcover of grasses. Savanna models have previously demonstrated that vegetation feedbacks on fire frequency can limit the density of overstory trees, thereby maintaining savannas. Positive feedbacks of either savanna trees alone or trees and grasses together on fire frequency have been shown to result in a stable savanna equilibrium. Grass feedbacks on fire frequency, in contrast, have resulted in stable equilibria in either a grassland or forest state, but not in a savanna. These results, however, were derived from a system of differential equations that assumes that fire occurrence is strictly deterministic and that vegetation losses due to fire are continuous in time. We develop an alternative formulation of the grass-fire feedback model that assumes that fires are discrete and occur stochastically in time to examine the influence of these assumptions on the predicted state of the system. We show that incorporating fire as a discrete event can produce a recurring temporal refuge in which both grass and trees co-occur in a stable, bounded savanna. In our model, tree abundance is limited without invoking demographic bottlenecks in the transition from fire-sensitive to fire-resistant life history stages. An increasing strength of grass feedback on fire results in regular, predictable fires, which suggests that the system can also be modeled using a set of difference equations. We implement this discrete system using modified Leslie/Gower difference equations and demonstrate the existence of a bounded savanna state in this model framework. Our results confirm the potential for grass feedbacks to result in stable savannas, and indicate the importance of modeling fire as a discrete event rather than as a loss rate that is continuous in time.  相似文献   

2.
Abstract: In East Africa fire and grazing by wild and domestic ungulates maintain savannas, and pastoralists historically set fires and herded livestock through the use of temporary corrals called bomas. In recent decades traditional pastoral practices have declined, and this may be affecting biodiversity. We investigated the effects of prescribed fires and bomas on savanna bird communities in East Africa during the first and second dry seasons of the year (respectively before and after the rains that mark the onset of breeding for most birds). We compared abundance, richness, and community composition on 9‐ha burned plots, recently abandoned bomas, and control plots in the undisturbed matrix habitat over a 3‐year period. Generally, recently burned areas and abandoned bomas attracted greater densities of birds and had different community assemblages than the surrounding matrix. The effects of disturbances were influenced by interactions between primary productivity, represented by the normalized difference vegetation index, and time. Bird densities were highest and a greater proportion of species was observed on burned plots in the months following the fires. Drought conditions equalized bird densities across treatments within 1 year, and individuals from a greater proportion of species were more commonly observed on abandoned bomas. Yearly fluctuations in abundance were less pronounced on bomas than on burns, which indicate that although fire may benefit birds in the short term, bomas may have a more‐lasting positive effect and provide resources during droughts. Several Palearctic migrants were attracted to burned plots regardless of rainfall, which indicates continued fire suppression may threaten their already‐declining populations. Most notably, the paucity of birds observed on the controls suggests that the current structure of the matrix developed as a result of fire suppression. Traditional pastoralism appears critical to the maintenance of avian diversity in these savannas.  相似文献   

3.
《Ecological modelling》2004,171(1-2):85-102
Forests and savannas are the major ecotypes in humid tropical regions. Under present climatic conditions, forest is in a phase of natural expansion over savanna, but traditional human activities, especially fires, have strongly influenced the succession. We here present a new model, FORSAT, dedicated to the forest–savanna mosaic on a landscape scale and based on stochastic modelling of key processes (fire and succession cycle) and consistent with common field data. The model is validated by comparison between the qualitative emergent behaviour of the model and results of biogeographical field studies. Three types of forest succession are shown: progression of the forest edge, formation and coalescence of clumps in savanna and global afforestation of savanna. The parameters (frequency of savanna fires, climate and soil fertility) appear to have comparable effects and there is a sharp threshold between a forest edge progression scenario and the cluster formation one. Moreover, pioneer seed dispersal pattern and recruitment are determinant: peaked curves near a seed source and far dispersal combine to increase the fitness of the pioneers.  相似文献   

4.
The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.  相似文献   

5.
Thaxton JM  Platt WJ 《Ecology》2006,87(5):1331-1337
Small-scale variation in fire intensity and effects may be an important source of environmental heterogeneity in frequently burned plant communities. We hypothesized that variation in fire intensity resulting from local differences in fuel loads produces heterogeneity in pine savanna ground cover by altering shrub abundance. To test this hypothesis, we experimentally manipulated prefire fuel loads to mimic naturally occurring fuel-load heterogeneity associated with branch falls, needle fall near large pines, and animal disturbances in a frequently burned longleaf pine (Pinus palustris) savanna in Louisiana, USA. We applied one of four fuel treatments (unaltered control, fine-fuel removal, fine-fuel addition, wood addition) to each of 540 (1-m2) quadrats prior to growing-season prescribed fires in each of two years (1999 and 2001). In both years fuel addition increased (and fuel removal decreased) fuel consumption and maximum fire temperatures relative to unaltered controls. Fuel addition, particularly wood, increased damage to shrubs, increased shrub mortality, and decreased resprout density relative to controls. We propose that local variation in fire intensity may contribute to maintenance of high species diversity in pine savannas by reducing shrub abundance and creating openings in an otherwise continuous ground cover.  相似文献   

6.
Staver AC  Archibald S  Levin S 《Ecology》2011,92(5):1063-1072
Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.  相似文献   

7.
In 1970, a programme of land recuperation started in Venezuelan savannas, strongly affected by the seasonality of precipitation; therefore, a network of dykes has been built to alleviate the floods and retain water throughout the dry period. Under the dyked system, the environment has been altered, allowing a change in the herbaceous vegetation towards aquatic species and an increase in primary production. It is assumed that a considerable quantity of nutrients is lost from the ecosystem through the floodgates, a situation that could be worsened with the climate change. This contribution describes the atmospheric input and total output in stream run-off of phosphorous (P) in a flooded savanna. Internal pools of the biogeochemical cycle of P associated with terrestrial compartments are described. In the flooded savanna, a large amount of P is immobilised (29.6?kg?ha?1) in their above ground biomass by grasses, and in soil microbial biomass. The P budget was nearly balanced, as measured losses were cancelled out by the inputs in rainfall. Soils act as a sink, retaining P coming either from precipitation or from desorption/mineralisation processes. That interruption can be maximised, and losses of P and other nutrients can be minimised with an adequate management of the floodgate.  相似文献   

8.
Effects of Restoring Oak Savannas on Bird Communities and Populations   总被引:2,自引:0,他引:2  
Abstract:  Efforts to restore and maintain oak savannas in North America, with emphasis on the use of prescribed fire, have become common. Little is known, however, about how restoration affects animal populations, especially those of birds. I compared the breeding densities, community structure, and reproductive success of birds in oak savannas maintained by prescribed fire (12 sites) with those in closed-canopy forests (13 sites). All sampling was conducted in Illinois (U.S.A.). Of the 31 bird species analyzed, 12 were more common in savannas, 14 were not affected by habitat structure, and 5 were more common in forest habitat. The species favored by disturbance and restoration included Northern Bobwhites ( Colinus virginianus ), Mourning Doves (  Zenaida macroura ), Red-headed Woodpeckers (  Melanerpes erythrocephalus ), Indigo Buntings (  Passerina cyanea ), and Baltimore Orioles ( Icterus galbula ). Those more common in closed-canopy forest included Ovenbirds ( Seiurus aurocapilla ) and Wood Thrushes (  Hylocichla mustelina ). Few species were unique to one type of habitat, but overall avian community structure in oak savannas and closed-canopy forests was generally distinctive. Estimates of nesting success (derived from 785 nests) revealed that 6 of the 13 species considered experienced greater productivity in the savanna habitat. Rates of brood parasitism were unaffected by restoration and habitat structure. Within savannas, tract size had little effect on breeding abundances and reproductive success. My results illustrate that restoration techniques can significantly affect the ecology of constituent animal populations and communities and have key implications regarding avian conservation and the management of forest habitat in fragmented landscapes. Small patches of forest habitat that regularly function as population sinks may offer far better prospects for birds if they are subjected to disturbance and ecosystem restoration.  相似文献   

9.
Fire, elephants, and frost are important disturbance factors in many African savannas, but the relative magnitude of their effects on vegetation and their interactions have not been quantified. Understanding how disturbance shapes savanna structure and composition is critical for predicting changes in tree cover and for formulating management and conservation policy. A simulation model was used to investigate how the disturbance regime determines vegetation structure and composition in a mixed Kalahari sand woodland savanna in western Zimbabwe. The model consisted of submodels for tree growth, tree damage caused by disturbance, mortality, and recruitment that were parameterized from field data collected over a two-year period. The model predicts that, under the current disturbance regime, tree basal area in the study area will decline by two-thirds over the next two decades and become dominated by species unpalatable to elephants. Changes in the disturbance regime are predicted to greatly modify vegetation structure and community composition. Elephants are the primary drivers of woodland change in this community at present-day population densities, and their impacts are exacerbated by the effects of fire and frost. Frost, in particular, does not play an important role when acting independently but appears to be a key secondary factor in the presence of elephants and/or fire. Unlike fire and frost, which cannot suppress the woodland phase on their own in this ecosystem, elephants can independently drive the vegetation to the scrub phase. The results suggest that elephant and fire management may be critical for the persistence of certain woodland communities within dry-season elephant habitats in the eastern Kalahari, particularly those dominated by Brachystegia spiciformis and other palatable species.  相似文献   

10.
The analysis of large data sets concerning fires in various forested areas of the world has pointed out that burned areas can often be described by different power-law distributions for small, medium and large fires and that a scaling law for the time intervals separating successive fires is fulfilled. The attempts of deriving such statistical laws from purely theoretical arguments have not been fully successful so far, most likely because important physical and/or biological factors controlling forest fires were not taken into account. By contrast, the two-layer spatially extended forest model we propose in this paper encapsulates the main characteristics of vegetational growth and fire ignition and propagation, and supports the empirically discovered statistical laws. Since the model is fully deterministic and spatially homogeneous, the emergence of the power and scaling laws does not seem to necessarily require meteorological randomness and geophysical heterogeneity, although these factors certainly amplify the chaoticity of the fires. Moreover, the analysis suggests that the existence of different power-laws for fires of various scale might be due to the two-layer structure of the forest which allows the formation of different kinds of fires, i.e. surface, crown, and mixed fires.  相似文献   

11.
We report on the genetic evaluation and behavioral study of social organization in the Asian elephant (Elephas maximus). Although Asian elephants and African elephants (Loxodonta africana) were previously thought to have similar social organizations, our results demonstrate a substantial difference in the complexity and structure of Asian elephant social groupings from that described for African savanna elephants. Photographic cataloging of individuals, radio telemetry, and behavioral observations in Ruhuna National Park, Sri Lanka, enabled us to assign associated females and young to four groups with overlapping ranges. Genetic sampling of individuals from the four groups in Ruhuna National Park and three other groups in surrounding areas, conducted through PCR amplification and sequencing of mitochondrial DNA from dung, supported the matriarchal nature of female groups and the lack of inter-group transfer of females. Behaviorally and genetically, the identified social groups were best described as ”family groups”. We did not find any evidence for the existence of social groups of higher complexity than family groups. Received: 25 March 2000 / Received in revised form: 28 March 2000 / Accepted: 1 April 2000  相似文献   

12.
This paper presents the development and validation results of a weighted small-world network model designed to simulate fire patterns in real heterogeneous landscapes. Fire spread is simulated on a gridded landscape, a mosaic in which each cell represents an area of the land surface. In this model, the interaction between burning and non-burning cells (here, due to flame radiation) may extend well beyond nearest neighbors, and depends on local conditions of wind, topography, and vegetation. An approach based on the coupling of the solid flame model with the Monte Carlo method is used to predict the radiative heat flux from the flame generated by the burning of each combustible cell to its neighbors. The weighting procedure takes into account latency (a combustible cell will only ignite when it has accumulated enough energy along time) and flaming persistence of burning cells. The model is applied to very different fire scenarios: a historical Mediterranean fire that occurred in southeastern France in 2005 and experimental fires conducted in arid savanna fuels in South Africa in 1992. Model results are found to be in agreement with real fire patterns, in terms both of rate of spread, and of the area and shape of the burn. This work also shows that the fractal properties of fire patterns predicted by the model are similar to those observed from satellite images of three other Mediterranean fire scars.  相似文献   

13.
When in 2010 the world's governments pledged to increase protected area coverage to 17% of the world's land surface, several Central African countries had already set aside 25% of their northern savannas for conservation. To evaluate the effectiveness of this commitment, we analyzed the results of 68 multispecies surveys conducted in the seven main savanna national parks in Central Africa (1960–2017). We also assembled information on potential drivers of large herbivore population trends (rainfall and number of rangers) and on tourist numbers and revenues. In six out of the seven parks, wild large herbivore populations declined dramatically over time, livestock numbers increased severalfold, and tourism, the pillar under a once thriving local wildlife industry, collapsed. Zakouma National Park (Chad) stood out because its large herbivore populations increased, an increase that was positively correlated with rainfall and number of rangers (a proxy for management inputs). With increasing insecurity and declining revenues, governments find themselves confronted with too few resources to protect vast areas. To deal with this conversation overstretch, we propose to extend the repeatedly promoted solutions––scaled up funding, enhanced management––with a strategic retreat, focusing scarce resources on smaller areas to save wildlife in the Central African savannas.  相似文献   

14.
Abstract:  Approaches to fire management in the savanna ecosystems of the 2-million ha Kruger National Park, South Africa, have changed several times over the past six decades. These approaches have included regular and flexible prescribed burning on fixed areas and a policy that sought to establish a lightning-dominated fire regime. We sought to establish whether changes in management induced the desired variability in fire regimes over a large area. We used a spatial database of information on all fires in the park between 1957 and 2002 to determine elements of the fire regime associated with each management policy. The area that burned in any given year was independent of the management approach and was strongly related to rainfall (and therefore grass fuels) in the preceding 2 years. On the other hand, management did affect the spatial heterogeneity of fires and their seasonal distribution. Heterogeneity was higher at all scales during the era of prescribed burning, compared with the lightning-fire interval. The lightning-fire interval also resulted in a greater proportion (72% vs. 38%) of the area burning in the dry season. Mean fire-return intervals varied between 5.6 and 7.3 years, and variability in fire-return intervals was strongly influenced by the sequencing of annual rainfall rather than by management. The attempt at creating a lightning-dominated fire regime failed because most fires were ignited by humans, and the policy has been replaced by a more pragmatic approach that combines flexible prescribed burning with lightning-ignited fires.  相似文献   

15.
A model was developed to represent the establishment of a fire-sensitive woody species from seeds and subsequent survival and growth through five size classes. Simulations accurately represent structural changes associated with increased density and cover of the fire-sensitive Ashe juniper (Juniperus ashei, Buckholz) and provide substantial evidence for multiple steady states and ecological thresholds. Without fire, Ashe juniper increases and herbaceous biomass decreases at exponential rates until a dense-canopy woodland is formed after approximately 75 years. Maintenance of a grass-dominated community for 150 years requires cool-season fires at a return interval of less than 25 years. When initial cool-season fires are delayed or return intervals are increased, herbaceous biomass (fuel) decreases below a threshold and changes from grassland to woodland become irreversible. With warm-season fires, longer return intervals maintain grass dominance, and under extreme warm-season conditions even nearly closed-canopy stands can be opened with catastrophic wildfires.  相似文献   

16.
Abstract: Loss of native grassland habitat in New England has reached>90%. Consequently, remaining grasslands persist as small, geographically isolated fragments, and populations of many plants and animals have declined or disappeared. Given the rarity of the fauna and flora of these habitats, ecological management of many of the remaining native grassland fragments in a manner that attempts to mimic natural processes has been intensive, and the effects of this management on some taxa, such as grassland birds, are now well understood. But the effects of management, especially prescribed fire, on native plants and invertebrates are less well known. I studied the effects of prescribed fire on northern blazing star ( Liatris scariosa var. novae-angliae), a rare grassland perennial endemic to the northeastern United States. Once distributed from southern Maine to northern New Jersey, northern blazing star has disappeared from 69% of the sites where it formerly occurred. Seed predation appears to be a critical proximate factor limiting recruitment of juveniles into local populations. Seven of 8 study sites in Maine and Massachusetts had a 65% average rate of seed predation, and there was no evidence of juvenile recruitment at these sites. None of these sites had been burned in the past 5 years. Experimental research at Kennebunk, Maine, demonstrated that, in the absence of fire, seed viability of northern blazing star was low, the result of larval microlepidopteran ( moth) predators in the flower heads. Prescribed fire temporarily reduced seed predation from approximately 90% to approximately 16% for 1 year following fire, but seed-predation levels once again approached 90% within 2 years. Prescribed fires larger than 13 ha helped reduce predation rates, but fires smaller than 6 ha did not, suggesting that dispersal of adult moths from unburned source areas was spatially limited. Preferably, prescribed burns should be larger than 10 ha, large enough to have core areas larger than 100 m from adjoining unburned units. My results suggest that prescribed fire should be an important component of habitat management for northern blazing star, and they emphasize the need to carefully study the effects of the spatial scale of prescribed fires in other geographic regions and for a broad range of taxa.  相似文献   

17.
A non-linear, deterministic model of biomass accumulation and nitrogen cycling in an even-aged, pure jack pine (Pinus banksiana Lamb.) stand was developed and used to explore effects of fire intensity and frequency of burning on the long-term nitrogen cycle. Given the model structure and assumptions, simulated results showed that successive fires at both light and severe fire intensities caused gradual depletion of the amount of N accumulated in the vegetation layers. Fires also reduced the amount of N in the litter and soil pools, with the initially large soil organically-bound N pool showing a particularly sharp decline, and decreased the productivity of the simulated stand. A frequency of one fire per 20 years for five successive burns produced declines of N accumulated in the tree stratum of 50–75% (depending upon fire intensity) in comparison with the undisturbed system at a corresponding age, whereas a 100-year frequency produced decreases of 10–22%. Similarly, declines in litter layer N were 54–72% at a 40-year frequency, compared with 30–55% at a 100-year frequency. The simulated results also suggested that both the stand age when burning occurred and the fire frequency were important, because distinctive patterns of accumulation and decline of N in ecosystem pools existed with increasing stand age. A serious lack of information regarding processes inherent in the model was found to exist in certain cases. Important processes which are currently poorly quantified include: (1) the factors controlling rates of tree growth; (2) the relation of foliar and other tissue N to soil N concentrations and foliar translocation; (3) the relation of forest floor conditions to decomposition and stand structural characteristics; and (4) the controls of a variety of soil N transformations, transfers, leaching and decomposition rates. Because of this basic lack of information and the great dependence of the model's behavior on these processes, the present version of the model is not suitable for real-world prediction. The model does have use as a means of combining hypotheses about a system into an explicit structure and examining the collective consequences of this, as well as pointing out future research needs for the system.  相似文献   

18.
Structure of native vertebrate faunas within 12 different forest types were related to features of the natural fire regime. Relations between faunal structure and fire regime followed patterns expected if faunas were adapted to fire regimes. Proportions of species breeding early in succession tended to increase with increasing fire size or burn rate (ha/year; p = 0.03); those breeding late in succession tended to decrease ( p = 0.04). As fire size increased, proportions of species breeding in cavities decreased ( p < 0.01). Proportions of species using downed wood to breed increased as the interval between fires increased and downed wood accumulated ( p < 0.01). Forestry practices to maintain biodiversity should mimic natural disturbance patterns, which differ across forest types. Implications for management to maintain vertebrate diversity are summarized in terms of the silvicultural system employed, the size of patches logged, the rate of timber removal, and the appropriate degree of connectivity among unlogged patches.  相似文献   

19.
Abstract: The ability of reserves to maintain natural ecosystem processes such as fire disturbance regimes is central to long-term conservation. Fire-scarred tree samples were used to reconstruct fire regimes at five study sites totaling approximately 230 ha in pine (   Pinus spp.) and oak ( Quercus spp.) forests of La Michilía Biosphere Reserve on the dry east slope of the Sierra Madre Occidental, Durango, Mexico. Study sites covered a 20-km environmental gradient of elevation, topography, and human land uses. Plant communities ranged from oak-pine to mixed conifer forests. Fires were frequent at all sites prior to 1930, when large-scale grazing of domestic livestock was initiated. Widespread fires have been excluded from four of the five sites since 1945, with an essentially uninterrupted regime of frequent fires continuing only in the reserve core. Xeric sites had many, smaller fires, whereas mesic sites had fewer but larger fires. On a reserve-wide scale, a fire burned on at least one site nearly every year, usually in the dry spring or early summer season, but fire years were rarely synchronous among the sites. Fire occurrence was weakly related to the Southern Oscillation climate pattern; major reserve-wide fire years almost never coincided with wet Southern Oscillation extremes but only occasionally matched dry extremes. Maintenance of the long-term frequent-fire regime in the reserve core is one indicator that the biosphere reserve model has been successful in conserving natural processes, but the protected area is small ( 7000 ha). Because of the key role of frequent-fire regimes in regulating ecosystem structure and function, restoration of the ecological role of fire disturbance is a desirable conservation strategy.  相似文献   

20.
Abstract:  Ranches are being converted to exurban housing developments in the southwestern United States, with potentially significant but little-studied impacts on biological diversity. We captured rodents on 48 traplines in grasslands, mesquite savannas, and oak savannas in southeastern Arizona that were grazed by livestock, embedded in exurban housing developments, grazed and embedded in development, or neither grazed nor embedded in development. Independent of habitat or development, rodent species richness, mean rank abundance, and capture rates of all rodents combined were negatively related to presence of livestock grazing or to its effects on vegetative ground cover. Exurban development had no obvious effects on rodent variety or abundance. Results suggest southwestern exurban developments can sustain a rich assemblage of grassland and savanna rodents if housing densities are low and houses are embedded in a matrix of natural vegetation with little grazing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号