首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The solubilization of eight selected substituted indole compounds (SICs) by carboxymethyl‐β‐cyclodextrin (CMCD) in water is reported. The results show that their solubility was well improved in CMCD aqueous solution, and the stoichiometry of inclusion complex of the studied SICs with CMCD was 1: 1. The acute toxicity to Photobacterium phosphoreum of the investigated SICs in CMCD aqueous solutions was also investigated and was compared with that in water. The results show that the toxicity of five studied SICs decreased while the toxicity of the rest three SICs increased in CMCD aqueous solutions, but neither the increase nor the decrease was significant.  相似文献   

2.
The interaction between 33 commercial pesticides with hydroxypropyI‐β‐cyclodextrin (HPBCD) was studied by charge‐transfer reversed‐phase thin‐layer chromatography using aqueous sodium chloride solutions as eluents. Each pesticide interacted with HPBCD, their lipophilicity linearly decreased with increasing HPBCD concentration, the pesticide ‐ HPBCD complex (probably inclusion complex) always being more hydrophilic than the uncomplexed pesticide. In many cases the retention of pesticide increased with increasing concentration of salt in the eluent. This effect can be tentatively explained by the suppression of the dissociation of the polar groups in the solute molecules resulting in increased apparent lipophilicity. No significant correlation was found between lipophilicity and complex stability or between salting‐out effect and lipophilicity, that is other than hydrophobic forces are involved in the pesticide ‐ HPBCD interaction.  相似文献   

3.
Water is an important resource for domestic, industrial, agricultural and recreational purposes. The quality of water is however significantly deteriorating due to the accumulation of organic pollutants in aqueous systems. Conventional water treatment technologies fail to remove these contaminants to desirable levels. Recent studies have revealed that cyclodextrin nanoporous polymers are capable of absorbing pollutants from water to parts per billion levels. We have demonstrated that functionalised cyclodextrin polymers have enhanced absorption capacities for some organic pollutants. Here we report the synthesis of several insoluble monosubstituted cyclodextrin polymers or “nanosponges”. We show that these polymers have improved abilities in the absorption of p-nitrophenol and pentachlorophenol from aqueous solutions.  相似文献   

4.
Nowadays, the human activity and the modern way of life are responsible for the increase of the environmental pollution. Industrial processes generate a variety of molecules that may pollute air, water, and soils due to negative impacts for ecosystems and humans. The development of innovative remediation technologies has thus emerged as a significant environmental priority. Within this scope, supramolecular chemistry, which is a recent discipline, could provide solutions. In particular, cyclodextrins (CDs) are a family of cyclic oligosaccharides having a low-polarity cavity in which organic compounds of appropriate shape and size can form inclusion complexes. This unique property makes them suitable for application in environmental protection. Here, we review the use of cyclodextrins and cyclodextrin derivatives in remediation technologies. Accordingly, the present review shows the advantages of using CDs in soil, groundwater, wastewater, and atmosphere remediation. Resulting processes are highly versatile, since the complexing ability of CD is applicable to a wide range of pollutants. They may also been referred to green processes, according to the CD innocuity. Moreover, as inclusion phenomena correspond to reversible equilibriums, a major trend in the CD environmental application field is to develop methods, which combine supramolecular chemistry and irreversible processes, as advanced oxidation or biodegradation. Such processes might lead to a complete remediation of pollutants and eventually to the CD recycling.  相似文献   

5.
双酚A对紫背浮萍生长和光合色素及抗氧化系统影响   总被引:1,自引:0,他引:1  
以紫背浮萍为实验对象,探究双酚A(bsiphenol A, BPA)对其生长、光合色素含量、抗氧化系统和渗透压调节物质的影响。结果表明,不同浓度(0、1、5、20和50 mg·L~(-1))BPA连续暴露7 d后,与对照组相比,随暴露浓度升高,紫背浮萍湿重和叶绿素含量呈现先显著增加后降低的趋势;暴露组过氧化氢(H_2O_2)含量和抗超氧阴离子自由基活性显著降低;丙二醛(MDA)含量在20和50 mg·L~(-1)组显著升高;暴露组抗氧化酶活性包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和总抗氧化能力(T-AOC)均低于对照组;谷胱甘肽(GSH)含量在高浓度组显著升高,20 mg·L~(-1)组可溶性糖含量显著升高,可溶性蛋白含量在中高浓度组显著增加。研究表明,中低浓度BPA会提高紫背浮萍光合色素含量,有机物积累增多,促进其生长;但随BPA浓度不断升高,紫背浮萍体内产生氧化损伤,抗氧化酶活性及叶绿素含量降低,生长受到抑制。本研究结果将为BPA污染控制及对水生植物生态毒性效应评价提供理论基础。  相似文献   

6.
Dithianon formulations are unstable in slightly basic aqueous solutions (pH 9, 20°C, t ½ = 5.6 h) but relatively stable in neutral or acidic solution (pH 4,20°C, t ½ = 6443 h). To ensure the efficacy of this fungicide it is important to prepare the spray mix fresh with neutral or slightly acidic water. Dithianon is unstable towards natural sunlight in the solid and aqueous phase, with half‐lives of approximately 68 and 42 days, respectively. Thermal hydrolysis does not seem to be the preferred degradation pathway when aqueous solutions are heated by the South Australian summer sun. The major aqueous phase photodegradation product has been identified as 2,3‐dihydro‐1,4‐dithiaanthraquinone. These results strongly suggest that should dithianon be accidentally released into basic Australian waters then it is likely to be rapidly chemically hydrolysed and pose little long term environmental threat. However, dithianon is only slowly chemically and photo‐lytically hydrolysed in neutral and acidic waters, and in this case accidentally release may pose a significant short term environmental threat.  相似文献   

7.
Lake Van is the largest lake in Turkey. The lake limits lifespan due to its high pH and brackish water. For this reason, only a single species of fish (Van Fish) is living in the lake that has been adapted to these conditions. In the present study, we investigated the total oxidant status (TOS), total antioxidant status (TAS), malondialdehyde (MDA) level and DNA damage effect of bisphenol A (BPA) (10?7, 10?6 and 10?5?M) on primary gill cell culture of Van Fish for 24 and 48?h of incubation periods. TAS levels were not changed when compared to those of the control group, but TOS levels were decreased in both 24 and 48?h. The MDA level increased only at the highest concentration (10?5) at the end of 12 and 24?h (p?.05). DNA damage increased only at the 10?5?M concentration after 48?h. At the end of the experiment, BPA exposure caused lipid peroxidation and genotoxic effect. These results indicate that high levels of BPA exposure induced oxidative stress and DNA damage by time- and concentration-dependent fashion in the gill cell culture of Van Fish. Gill cell culture is a useful model for the rapid identification of the harmful effects of chemicals in the aquatic environment.  相似文献   

8.
Evaluation of Electrokinetic Remediation of Arsenic-contaminated Soils   总被引:1,自引:0,他引:1  
The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH2PO4) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals.  相似文献   

9.

Mixed contamination by organic and inorganic compounds in soil is a serious problem for remediation. Most laboratory studies and field-scale trials focused on individual contaminant in the past. For concurrent bioremediation by biodegradation and bioleaching processes, we tested metal-reducing microorganism, Geobacter metallireducens. In order to prove the feasibility of the coupled process, multiple-contaminated soil was prepared. Mineralogical analyses have shown the existence of labile forms of As(V) as amorphous and/or weakly sorbed phases in the secondary Fe oxides. In the biotic experiment using G. metallireducens, biodegradation of toluene and bioleaching of As by bacteria were observed simultaneously. Bacteria accelerated the degradation rate of toluene with reductive dissolution of Fe and co-dissolution of As. Although there have been many studies showing each individual process, we have shown here that the idea of concurrent microbial reaction is feasible. However, for the practical use as a remediation technology, more details and multilateral evaluations are required in future studies.

  相似文献   

10.
Heavy metals and soil microbes   总被引:1,自引:0,他引:1  
Heavy metal pollution is a global issue due to health risks associated with metal contamination. Although many metals are essential for life, they can be harmful to man, animal, plant and microorganisms at toxic levels. Occurrence of heavy metals in soil is mainly attributed to natural weathering of metal-rich parent material and anthropogenic activities such as industrial, mining, agricultural activities. Here we review the effect of soil microbes on the biosorption and bioavailability of heavy metals; the mechanisms of heavy metals sequestration by plant and microbes; and the effects of pollution on soil microbial diversity and activities. The major points are: anthropogenic activities constitute the major source of heavy metals in the environment. Soil chemistry is the major determinant of metal solubility, movement and availability in the soil. High levels of heavy metals in living tissues cause severe organ impairment, neurological disorders and eventual death. Elevated levels of heavy metals in soils decrease microbial population, diversity and activities. Nonetheless, certain soil microbes tolerate and use heavy metals in their systems; as such they are used for bioremediation of polluted soils. Soil microbes can be used for remediation of contaminated soils either directly or by making heavy metals bioavailable in the rhizosphere of plants. Such plants can accumulate 100 mg g?1 Cd and As; 1000 mg g?1 Co, Cu, Cr, Ni and 10,000 mg g?1 Pb, Mn and Ni; and translocate metals to harvestable parts. Microbial activity changes soil physical properties such as soil structure and biochemical properties such as pH, soil redox state, soil enzymes that influence the solubility and bioavailability of heavy metals. The concept of ecological dose (ED50) and lethal concentration (LC50) was developed in response to the need to easily quantify the influence of pollutants on microbial-mediated ecological processes in various ecosystems.  相似文献   

11.
Arsenic contamination in water,soil, sediment and rice of central India   总被引:1,自引:0,他引:1  
Arsenic contamination in the environment (i.e. surface, well and tube-well water, soil, sediment and rice samples) of central India (i.e. Ambagarh Chauki, Chhattisgarh) is reported. The concentration of the total arsenic in the samples i.e. water (n=64), soil (n=30), sediment (n=27) and rice grain (n=10) were ranged from 15 to 825 μg L−1, 9 to 390 mg kg−1, 19 to 489 mg kg−1 and 0.018 to 0.446 mg kg−1, respectively. In all type of waters, the arsenic levels exceeded the permissible limit, 10 μg L−1. The most toxic and mobile inorganic species i.e. As(III) and As(V) are predominantly present in water of this region. The soils have relatively higher contents of arsenic and other elements i.e. Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ga, Zr, Sn, Sb, Pb and U. The mean arsenic contents in soil of this region are much higher than in arsenic soil of West Bengal and Bangladesh. The lowest level of arsenic in the soil of this region is 3.7 mg kg−1 with median value of 9.5 mg kg−1. The arsenic contents in the sediments are at least 2-folds higher than in the soil. The sources of arsenic contamination in the soil of this region are expected from the rock weathering as well as the atmospheric deposition. The environmental samples i.e. water, soil dust, food, etc. are expected the major exposure for the arsenic contamination. The most of people living in this region are suffering with arsenic borne diseases (i.e. melanosis, keratosis, skin cancer, etc.).  相似文献   

12.
Batch equilibrium and soil thin layer chromatography (TLC) techniques were used to investigate the influence of different volume fractions of organic cosolvents (acetone and methanol) on the adsorption and movement of carbaryl in four different types of Indian soils. L-shaped isotherms were obtained for both the cosolvent–water mixtures at all f s values and were in close agreement with the Freundlich equation. Higher adsorption was observed on F.R.I. soil (FSL) followed by Alampur soil (ASL), Kalai soil (KL), and Bhoran soil (BSL) at all f s values for both the cosolvent systems as was anticipated from the K and K D values. The K and K D values also confirmed that carbaryl adsorption was higher in methanol–water mixture than acetone–water mixture and decreased with increasing f s values. The frontal R f values obtained from soil TLC studies were inversely proportional to the K and K D values for both the cosolvent systems. The higher K and K D values and lower R f values in methanol–water mixtures relative to acetone–water mixtures for all the soils indicated that acetone had a greater potential for ground water contamination compared to methanol. The adsorption data were used to evaluate the cosolvent theory for describing adsorption of carbaryl in acetone–water and methanol–water mixtures. The aqueous phase partition coefficients, K DW (mol g?1), normalized with respect to f oc for carbaryl was evaluated by extrapolating f s → 0.  相似文献   

13.
Concentrations of Fe, Mn, Zn, Pb, Cu and Cd in soil solutions taken in the vicinity of a sulphur mine range from 354 to 9080 μM L−1, and exceeded the concentrations measured in solutions from light acid arable soils. The content of each metal was a negative function of either the solution pH or of Ca concentration. Reclamation of S-contaminated soil by an application of 2000 tonnes of limestone per hectare did not significantly affect the solubility of trace metals, whereas equilibration of soil samples with CaCO3 in the laboratory decreased solubility of metals, especially in the soil under moist conditions. Sulphur deposition may modify the natural cycling of metals in soils.  相似文献   

14.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in plants in waste water irrigated areas. Results revealed that waste water contained lower concentrations of Cr, Zn, Cu, and Pb except Cd (0.03) than the permissible limits prescribed by the World Health Organization. The maximum metal concentrations occurred in Brassica oleracea (Zn 63.80, Cu 12.25, Cr 10.65, Pb 3.63, and Cd 0.56 mg Kg?1).The metal enrichment (EF of Cd 1.9, Cr2.9, Zn 4.8, Cu 6.5, and Pb 15.5) and degree of contamination (CF of Cd 2.9, Cr 2.0, Zn 2.3, Cu 2.7, and Pb 2.2) showed that accumulation of the five toxic metals increased during sewage irrigation as compared with the reference values, other Indian regions and globally. However, based on WHO standards for heavy metal contamination of soil and irrigation water, our data does not ensure safe levels for food.  相似文献   

15.
16.
在田间条件下,研究添加硫代硫酸铵对黄平大黄油菜(Brassica juncea var.HPDH)富集土壤汞(总汞含量13.7mg·kg-1)及土壤汞形态转化影响。试验设置2个处理,对照小区(无硫代硫酸铵)和处理小区(每公斤土壤加入8 g硫代硫酸铵),硫代硫酸铵溶液在植物收获前7 d添加到土壤。试验结束后,分析植物生物量和组织内汞含量。结果表明,硫代硫酸铵处理小区植物生物量(干重)要略高于对照区。硫代硫酸铵处理小区植物根系和地上部分汞含量分别是对照区的600和250倍。利用连续化学浸提法分析了修复前后土壤汞形态变化特征,发现硫代硫酸铵辅助植物修复后能显著降低土壤有机结合态汞含量,大幅度提高残渣态汞含量,溶解态与可交换态汞含量略有增加,特殊吸附态和铁锰氧化态汞含量无显著变化。  相似文献   

17.
Regeneration is a vital physiological process for survival of adult organisms. Bisphenol A (BPA), diethystilbestrol (DES), 17α-ethinylestradiol (EE2), and 17β-estradiol (E2) were examined for their effects on head formation in decapitated freshwater planarians (Dugesia japonica). The median lethal concentration of the test chemicals and the median inhibitory concentration for decapitated planarians and different regenerative endpoints, were determined for 3–7 d of exposure. For planarian head regeneration, the no-observed-effect level of BPA and DES was 0.05 mg L?1 and 1 mg L?1 for EE2 and E2. The effects of BPA, DES, and EE2 on asexual planarian regeneration did not correspond with the order of their estrogenic potencies, suggesting that the effects, at least partially, were due to general toxicity rather than their estrogenicity. In view of the published data on concentrations of xenoestrogens in water bodies versus the nominal levels tested here, this study suggests that the current environmental levels of BPA, DES, EE2, and E2 have no immediate adverse effects on freshwater planarian regeneration.  相似文献   

18.
The impact of bisphenol A (BPA) on Gammarus fossarum and Lumbriculus variegatus was studied in four artificial indoor streams (0, 5, 50 and 500?µg?L?1 BPA, nominal) over 103 days in a pulse–dose exposure scenario (weekly BPA application). For G. fossarum populations at day 103, the proportions of juveniles and of breeding females from the highest BPA treatment were in tendency reduced. For individually exposed gammarid pairs an EC10 of 17?µg?L?1 BPA (nominal) for the proportion of reproductive females in the fourth brood was determined. During the first three broods, the largest brood size occurred at the highest BPA concentration, whereas in the fourth brood it decreased concentration-dependently (fourth brood EC10?=?5?µg?L?1 BPA, nominal). Effects on L. variegatus were a reduced population growth (103?d-EC10 of 2?µg?L?1 BPA, nominal) and an increase in dry weight and the number of segments in large, complete worms.  相似文献   

19.
In South West England, more than two hundred years of intensive exploitation of metalliferous ore deposits, combined with the natural processes of pedogenesis from mineral-rich parent rocks, has resulted in the creation of a aignificant area of arsenic-contaminated wastes and soils. The scale of arsenic dispersion by natural and anthropogenic processes is such that 722 km2 of land contains concentrations of arsenic in excess of 110 g g–1, more than twice the maximum that might be expected in a normal soil.The general rationale for the clean-up of derelict and contaminated mining sites often includes aesthetic factors and the desirability of preventing the dispersion of contaminants beyond the site boundaries. Only in extreme cases is public health directly invoked as justification for remediation. In South West England, if arsenic constitutes a genuine threat to the public, an increased rate of site remediation would be justified. The primary purpose of this review is to establish whether or not widespread arsenic contamination (principally of soils) has any measurable effects on public health in South West England, and how this might affect current contaminated site remediation policy. The review is based on data from previous research in the region, and other relevant international studies of mining and smelting communities, and other populations exposed to elevated arsenic concentrations. The literature reviewed also includes the determination of the extent and sources of contamination, and pathways between source and man.While the contamination of potable waters in some countries has led to measurable health effects, this scenario has not yet been identified in South West England, and there is little reason to believe that significantly contaminated potable water supplies would escape detection for extended periods of time under the current monitoring regime.In relative terms (based on both globaland local data), one of the most significant links between contaminated soils and humans appears to be contaminated food stuffs. In absolute terms, such exposure is low due to the natural constraints on arsenic uptake by herbage, cereal crops and vegetables, and the food chain does not appear to have been significantly compromised in South West England. Chronic health effects are unlikely as excessive arsenic concentrations in locally grown food crops remain rare.With the problems of confounding medical and social factors, it is not surprising that studies in South West England have failed to identify chronic exposure to arsenic at very low concentrations as a significant health risk. Those studies that indicate otherwise do not stand up to close scrutiny. It appears that the number of additional deaths arising from the widespread arsenic contamination in South West England is small. The relative benefits of a costly statistical study to actually determine the number of additional deaths might be considered minimal, but one major area could benefit from further studies: the sensitivity of certain population sub-groups to environmental arsenic exposure. Of particular interest are children, for whom significant exposure to arsenic via soil ingestion may be occurring.Based on available information, there appears to be no justification for a large programme of site remediation. Resources should, however, be expended on enlightening the general public, and private and governmental organisations as regards the gap between the perceived and actual significance of arsenic contamination in South West England.To whom correspondence should be addressed.  相似文献   

20.
Lead-contaminated mine tailings were bioremediated using microbial/phyto remediation. The optimum lead accumulation and tolerance capacity of the plant–microbe partnership were investigated, and their mechanisms were evaluated further under varied levels of lead contamination through a flowerpot experiment in a greenhouse. Enzymes activities revealed that bioremediation has improved fertility and metabolism of tailing soil. The removal efficiency of lead was in the order of microbial/phytoremediation?>?phytoremediation. Solanum nigrum L. was not shown to be a hyperaccumulator for lead. Mucor circinelloides significantly enhanced the growth response and lead accumulation in plants more than Mortierella and Trichoderma asperellum. Moreover, Mortierella was discovered to have good metal tolerance capacity under high Pb concentrations (1200 and 1600?mg?kg?1). The results for lead bioavailability showed that phytostabilisation serves as a major repair pathway for S. nigrum L. Effective fractions were immobilised for decreased bioavailability by T. asperellum and M. circinelloides. On the contrary, an increased amount of lead was mobilised for increased bioavailability by Mortierella. This study provides new insights into the feasibility of using S. nigrum L. and the aforementioned indigenous fungus strains for large-scale bioremediation of mine tailings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号