首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary. Following herbivory, induced responses involving plant secondary metabolites have been reported in a number of tree species. Although a wide range of plant secondary metabolites appear to operate as constitutive plant defences in trees belonging to the Eucalyptus genus, no induced responses have as yet been reported following foliar-chewing insect damage. We empirically tested whether branch defoliation (artificial and larval) of 2-year-old Eucalyptus globulus Labill. trees altered the abundance of specific plant secondary metabolites immediately (3 months after initial larval feeding) and 8 months after the cessation of larval feeding. Metabolites assayed, included essential oils, polyphenolic groups and foliar wax compounds and in all cases their abundance was not significantly altered by defoliation. However, the level of foliar tannins after 3 months of larval feeding did display a trend that suggested elevated levels as the result of defoliation, though this trend was not evident 8 months later, indicating that, if real, the response was a rapid and not a delayed induced response. The level of foliar tannins was also negatively correlated to both average larval survival and average percentage branch defoliation, suggesting that foliar tannins may operate as toxins and/or anti-feedants to M. privata larval feeding.  相似文献   

3.
The response of the unarmored dinoflagellate Gymnodinium breve, which is the causative organism in catastrophic fish kills along the Florida Gulf coast, to enrichment with selected inorganic nutrients, municipal waste materials, and various detergent components has been determined. The biostimulatory effects of the various enrichments were determined by a modification of the Provisional Algal Assay Procedure of the Joint Industry/Government Task Force on Eutrophication. Inorganic nutrients (orthophosphate, nitrate, and ammonia) were added individually and in combination, and the results were compared to equivalent enrichments with the effluent from a secondary sewage-treatment plant. The maximum cell population, Nmax, attained could be increased 3-fold by the sew-age-treatment plant effluent or by the equivalent combination of inorganic nutrients; individually, however, the inorganic nutrients had no pronounced effect on maximum cell population, Nmax (except for a 30% increase produced by slight orthophosphate enrichment). The results of these studies indiccate that, at concentrations of orthophosphate typical of Florida coastal waters (ca. 0.10 ppm), the growth-promoting potential (as reflected by Nmax) of the medium was a linear function of the ammonia-nitrogen concentration (0.01 to 0.11 ppm). The sewage-treatment plant effluent was presumably low in detergent phosphate, having been obtained from a treatment plant some 6 months after the enactment of a ban on phosphate-containing detergents. Additions of orthophosphate or detergent-phosphate to the treatment-plant effluent did not significantly increase the observed biostimulatory effect of the waste material.  相似文献   

4.
The present study investigated the phytoremediation of simulated wastewater, mimicking wastewater generated by industrial processes containing significant amounts of toxic heavy metal ions. The wetland plant Ludwigia stolonifera was used to study its efficiency in the removal of the three toxic metals Pb, Cd and Cr. Survivability of the plant has been studied in solutions at different concentrations of three metals separately or as a mixture, and the accumulation of these toxic metals for a prolonged period has been evaluated. The plant performed very successful in eliminating Cd, Cr and Pb as single metals of up to 65%, 97% and 99%, respectively, within four days. In addition, the trend of metal uptake revealed negligible dependence on different masses of plant and on various pH-values. L. stolonifera has high potential in eliminating various toxic pollutants from aquatic environments.  相似文献   

5.
Polygonum cuspidatum Sieb. and Zucc., a traditional Chinese medicine is now a wide-spread invasive neophyte in Europe and America. The novel weapon hypothesis states that some invasive weed species owe part of their success as invaders to allelopathy mediated by some allelochemicals. Previous HPLC/UV/ESI-MS analysis showed that the constituents of the roots of P. cuspidatum from China were obviously different from the species collected in Switzerland (present as an invasive neophyte) with respect to piceatannol glucoside, resveratroloside and some proanthocyanidin. This work isolated these special constituents from the invasive plant and studied their allelopathy effect, as well as the related structures by the seedling and growing model of Lepidium sativum (garden cress, Brassicaceae). The results revealed that stilbenes as piceatannol glucoside, resveratroloside and proanthocyanidins as catechin, epicatechin from this plant were comparatively stronger allelochemicals than the reported allelochemical (−)-catechin, which may partly explain the invasive behavior of this plant in Europe.  相似文献   

6.
Summary. Several species of the flea beetles genus Longitarsus are able to sequester pyrrolizidine alkaloids (PAs) from their host plants. In five Longitarsus species we compare the concentration of PAs present in their host plants belonging to the Asteraceae or Boraginaceae with those found in the beetles. To get an estimate of the intrapopulation variability, three samples of five beetles each and five individual plants were analyzed for each comparison. A strong intrapopulation variability could be detected both among plant and beetle samples. The total concentration found in the beetles varied strongly between species. The local host plant and its phenology influence the concentrations present in the beetles as evidenced in comparisons of a single beetle species from two different hosts and of one beetle species collected at the same site at different times of the year. In addition, different beetle species apparently vary in their capacity to sequester the alkaloids, at the lowest extreme the mean PA concentration in the beetles (0.034 μg PA/mg dry weight) was 1/30 of the mean concentration found in the plant leaves (L. aeruginosus from Eupatorium cannabinum), at the highest extreme (2.098 μg PA/mg dw) the concentration in the beetles was a 1000 fold higher than in the plant leaves (L. nasturtii from Symphytum officinale). The highest mean concentration found in the beetles was 3.446 μg/mg dw (L. exoletus from Cynoglossum officinale). The absolute concentrations found in the beetles are comparable to other insects which have been shown to be effectively defended against their potential predators. Received 22 June 1999; accepted 25 August 1999  相似文献   

7.
The sulfur butterfly, Colias erate, utilizes various legumes as host plants. We examined the chemical constituents of its primary host plant, Trifolium repens (white clover), to identify phytochemicals inducing oviposition by C. erate females. Since one of the four aqueous subfractions prepared from a methanolic extract of the plant has previously been shown to be the most responsible for the oviposition-stimulatory activity exerted by the plant, chemical analyses were conducted of the fraction concerned. Activity-directed fractionation of the subfraction by ion-exchange chromatography revealed that the key substance(s) resided in the neutral fraction. Preparative TLC of the neutral fraction and subsequent spectral analyses identified d-(+)-pinitol, glycerin, methyl β-d-glucoside, and myo-inositol as characteristic components together with ubiquitous sugars (e.g., sucrose and glucose). Of these, only pinitol singly evoked significant oviposition responses at concentrations over 0.05%. In dual-choice bioassays, however, females laid significantly more eggs on pinitol solutions admixed with glycerin or methyl β-d-glucoside than on pinitol alone. Two cyanoglucosides, linamarin, and lotaustralin, occurring in the other aqueous subfractions, also synergistically increased the oviposition response in combination with pinitol. The results clearly indicated that pinitol is a crucial oviposition stimulant involved in host recognition, while glycerin, methyl β-d-glucoside, linamarin, and lotaustralin function as synergists. We further examined the oviposition responses of C. erate females to aqueous fractions, along with their chemical compositions, that had been prepared from five other host plants and a non-host plant, Aristolochia debilis (Aristolochiaceae), on which oviposition occasionally took place in an outdoor cage during the experiments. The plant species accepted by ovipositing females were all found to contain pinitol in amounts enough to induce egg laying by the butterfly, thus leading to the conclusion that pinitol serves as the essential mediator in recognizing and accepting potential host plants.  相似文献   

8.
Preliminary field studies were carried out at Dolfrwynog Bog in July 2000. Replicate samples of water, Armeria maritima plants and the soils adhering to its roots were collected and analysed for copper. Concentrations of up to 6486 mg kg–1 of copper in the soils were recorded. Accumulation of copper by the plant as expressed by concentration factors (CF) show that it is acting mainly as a copper excluder. Of the copper that is taken up, most of it is retained within the roots with very little being transported to the shoots of the plant. Moreover, a further possible mechanism of tolerance is exhibited by the excretion of copper through its decaying leaves. Towards the use of in vitro cultures to study the copper tolerance mechanisms in A. maritima a micropropagation protocol has been developed. The ex vitro plants have been rooted and established in compost.  相似文献   

9.
This review presents the status of knowledge about gasoline exhaust pollution and its impact biochemical and physiological characteristics of plants. Parameters on such as leaf conductance, membrane permeability, ascorbic acid, chlorophyll and relative water content have been used as indicators to assess the impact of gasoline exhaust pollution on plant health. Tolerant plants such as Mangifera indica Linn. are reported showing an insignificant decrease in the percentage of chlorophyll content (3.6%) and a significant increase in the percentage of ascorbic acid (84.6%) and sensitive plants such as Cassia fistula are reported showing a significant decrease in the percentage of chlorophyll (66.4%) as well as ascorbic acid (32.9%). In the case of ornamental plants, Dracaena deremensis has been reported to show an insignificant decrease in the chlorophyll content but a significant increase in the ascorbic acid, pH and relative water content, which were found to be in tolerant category, while Dianthus caryophyllus showed sensitive characteristics. Such plants can be used as sinks and bioindicators for gasoline exhaust pollution. Though several studies reported biochemical impacts of individual or combined exhaust gases on plant species, the cumulative effect of gasoline exhaust on plant species has not been studied extensively, especially in the developing countries.  相似文献   

10.
Kelp and other seaweeds are traditionally used in many parts of the world as a soil amendment on arable fields. Seaweeds contain biochemical compounds that can act as plant growth regulators in terrestrial plants. In a low-intensity arable grassland in northwest Scotland an organic fertilizer, kelp (Laminaria digitata) has been used for hundreds of years, due to its anticipated positive effect as a soil conditioner and provider of plant nutrients. In this study the effects of kelp on germination and rooting of crops and native plants from this area were investigated in soil-free media. Germination was studied by incubation in the presence of kelp solutions. Rooting of plant cuttings was assessed after a pulse treatment with kelp solutions, and indole-3 acetic acid (IAA) as a reference plant growth regulator. Germination percentage of Plantago lanceolata, Trifolium repens and Avena strigosa seeds increased significantly when incubated with 0.05% kelp solutions. Total root weight and the individual weight of roots produced in cuttings of Vigna radiata and P. lanceolata were significantly increased when exposed to a 0.5% solution of kelp. Plant vigour, assessed visually, decreased significantly for P. lanceolata exposed to kelp at concentrations of 0.5 and 5.0% indicating the presence of a threshold level for an inhibitory effect of kelp at these concentrations, which may be due to high salinity. The results confirmed the presence of plant growth regulators in kelp, and indicates that amendment with kelp may potentially affect plant community composition. The threshold levels where some plants responded negatively to kelp amendment were close to or lower than the theoretical concentrations of kelp in soil water at field conditions with the current doses used on the machair, indicating that care should be taken in either administering kelp at the appropriate dose or leaching out salt before application.  相似文献   

11.
Plant defense against herbivores often involves constitutive and inducible mechanisms of resistance. Obligate ant-plants, which provide food and housing for ants, are thought to primarily rely on ants for defense against herbivores. This form of plant defense has largely been viewed as static. We have been investigating the dynamic nature of Azteca ants as an inducible defense of Cecropia trees. Ants rapidly recruit to and patrol sites of foliar damage. We propose that Azteca ants can be viewed as an inducible defense for Cecropia trees because of their sensitivity to cues associated with herbivory, their rapid and aggressive recruiting ability, and their reclaimable and redeployable nature as a plant defense. In this study, we examine ant behavior following plant damage, and the potential cues that indude ant recruitment. We found that ants present on leaves when the plant is damaged leave the damaged leaf and recruit other ants to it, presumably by laying recruitment trails. Volatile leaf cues associated with herbivory were important in eliciting an induced response in two experiments. However, we found that cues associated with a congeneric plant elicited a much stronger ant response than conspecific cues. Although the type of leaf damage (gaping wounds versus leaf edge wounds) did not affect the level of ant recruitment, the extent of damage did. Leaves with one hole punched showed a 50% increase in ants, while leaves with five holes punched in them elicited a 100% increase in ant numbers. In sum, it appears that multiple plant-related cues associated with herbivory are involved in induction of ant recruitment in the Cecropia-Azteca system. We discuss the generality of ant responses to herbivory in obligate ant-plant systems, and in facultative ant-plant associations, which may be more common. Received: 23 March 1998 / Accepted after revision: 5 July 1998  相似文献   

12.
The addition of EDTA in phytoextraction studies has been reported to increase heavy metal accumulation in above-ground parts or to have no negative impact on the overall (root/shoot) accumulation levels in terrestrial plants. At a purely quantitative level, this study assessed the phytoextraction potential of a previously untested high-biomass terrestrial plant, Symphytum officinale L. (comfrey), in the presence of Pb and EDTA. In this hydroponic-based study, we report a small increase in shoot accumulation of Pb with EDTA but, conversely, the presence of EDTA in the nutrient medium markedly reduced the overall quantity of Pb in the plant root by at least 80%. The loss does not appear to be explained by EDTA acting alone, increased transport of Pb to the shoots, or anionic charge repulsion of the [PbEDTA]2? complex. The elusive action and negative effect of EDTA on Pb accumulation in S. officinale provides additional reasons towards a growing trend away from the use of EDTA as a chelating agent in phytoextraction.  相似文献   

13.
Hydraulically connected wetland microcosms (~50?L) in series were used to test the effectiveness of varying combinations of two common aquatic vascular plants, parrot feather (Myriophyllum aquaticum) and cattail (Typha latifolia), for mitigating contamination from a mixture of nitrogen (ammonium nitrate) and permethrin. The upstream series included Myriophyllum only (M) and Typha only (T) while the combination upstream effluent into downstream series included Myriophyllum into Myriophyllum (M?+?M) and Typha into Myriophyllum (T?+?M). During flow, M into M?+?M more efficiently mitigated nitrogen than T into T?+?M. Post-flow, nitrogen removal efficiency was greater for T versus M and M?+?M versus T?+?M. Mean aqueous dissipation half-lives (t1/2) of NH4-N and NO3-N were more rapid in T than M treatments. Ammonium and nitrate t1/2 was highly correlated with aquatic plant above-ground shoot biomass. Permethrin mitigation efficiencies and t1/2 were not significantly affected by plant species either singly or in combination. Trans-permethrin t1/2 was moderately correlated with plant biomass, but not cis-permethrin t1/2. Results of this study indicate differences in aquatic plant species and flow path influence nitrogen removal but not permethrin. However, plant species appears less important than overall plant biomass in ascertaining aquatic plant effectiveness in mitigating a nitrogen–permethrin mixture.  相似文献   

14.
Abstract

Starting from the suspicion that the medicinal herbs may contain traces of pesticides and taking into account the risks of patients being exposed to contaminated products, the aim of this research was to evaluate the pesticide residues and the degree of their transfer (%) in three types of preparations (infusion, decoctionand cold maceration), for four medicinal plant species very often used in phytotherapy (Rosmarini folium, Menthae folium, Saturejae herba and Basilica herba). For each type of plant product, four samples were purchased from different manufacturers and they have been analyzed using gas chromatography- tandem mass spectrometry. One out of four samples of the same plant species contain at least one pesticide residue above the maximum level and shows a significant transfer of these residues in aqueous extractive solutions during extraction. The highest rate of pesticide transfer from medicinal plants was identified in infusions, recommended by many manufacturers.  相似文献   

15.
Summary. We have isolated a caffeoylcyclohexane-1-carboxylic acid derivative, 3-caffeoyl-muco-quinic acid (3-CmQA), as a contact oviposition stimulant for the zebra swallowtail butterfly, Eruytides marcellus (Papilionidae), from the foliage of its primary host plant, Asimina triloba (Annonaceae). This compound alone was as active in stimulating oviposition by females as were the parent ethanolic plant extract and the host plant itself. Other tested isomers of 3-CmQA, including 5-caffeoylquinic acid (5-CQA or trans-chlorogenic acid), were inactive. We found, however, that experienced female butterflies responded strongly to host volatiles, which enhanced landing rates and hence oviposition.? This is the first report of an oviposition stimulant for a swallowtail butterfly of the tribe Graphiini. We found 3-CmQA to be the major caffeoylcyclohexane-1-carboxylic acid isomer in plants of the genus Asimina. These plants lack appreciable amounts of 5-CQA, which has been shown previously to be one of the oviposition stimulants for certain Rutaceae- or Apiaceae-feeding swallowtails of the related tribe Papilionini.? Our findings, along with earlier results from the tribes Troidini and Papilionini, suggest that responses by swallowtails to hydroxycinnamic acid derivatives as oviposition cues date back at least to the ancestor of the subfamily Papilioninae. Received 24 March 1998; accepted 27 May 1998.  相似文献   

16.
Plant chemistry and insect sequestration   总被引:2,自引:1,他引:1  
Most plant families are distinguished by characteristic secondary metabolites, which can function as putative defence against herbivores. However, many herbivorous insects of different orders can make use of these plant-synthesised compounds by ingesting and storing them in their body tissue or integument. Such sequestration of putatively unpalatable or toxic metabolites can enhance the insects’ own defence against enemies and may also be involved in reproductive behaviour. This review gives a comprehensive overview of all groups of secondary plant metabolites for which sequestration by insect herbivores belonging to different orders has been demonstrated. Sequestered compounds include various aromatic compounds, nitrogen-containing metabolites such as alkaloids, cyanogenic glycosides, glucosinolates and other sulphur-containing metabolites, and isoprenoids such as cardiac glycosides, cucurbitacins, iridoid glycosides and others. Sequestration of plant compounds has been investigated most in insects feeding or gathering on Apocynaceae s.l. (Apocynoideae, Asclepiaoideae), Aristolochiaceae, Asteraceae, Boraginaceae, Fabaceae and Plantaginaceae, but it also occurs for some gymnosperms and even lichens. In total, more than 250 insect species have been shown to sequester plant metabolites from at least 40 plant families. Sequestration predominates in the Coleoptera and Lepidoptera, but also occurs frequently in the orders Heteroptera, Hymenoptera, Orthoptera and Sternorrhyncha. Patterns of sequestration mechanisms for various compound classes and common or individual features occurring in different insect orders are highlighted. More research is needed to elucidate the specific transport mechanisms and the physiological processes of sequestration in various insect species.  相似文献   

17.
Summary Larvae of the ithomiine butterflyPlacidula euryanassa sequester tropane alkaloids (TAs) from the host plantBrugmansia suaveolens and pass them through the pupae to freshly emerged adults. Wild caught adults also show in their tissues, variable amounts of pyrrolidizine alkaloids (PAs), probably sequestered from variable plant sources and subject to dynamics of incorporation, accumulation and utilization of PAs by ithomiine butterflies. The ratio TAs/PAs is also variable between different populations.Miraleria cymothoe, another ithomiine that feeds onB. suaveolens as larvae, does not sequester TAs from the host-plant, but sequesters PAs from plant sources visited by the adult butterflies. The main alkaloid found in both butterflies is lycopsamine, which also is the principal PA found in all genera of Ithomiinae.  相似文献   

18.
This study assessed the distribution of heavy metals in soil and their subsequent accumulation in plants at a site at Umudike, Nigeria, that had been contaminated by agrochemicals. Soil and plant samples were analysed for zinc (Zn), chromium (Cr) and cadmium (Cd). The highest concentrations of Zn (251.50 mg/kg) and Cd (61.33 mg/kg) were obtained at a soil depth of 0–10 cm. The highest concentrations of Zn (16.52 mg/kg), Cd (27.12 mg/kg) and Cr (164.07 mg/kg) were accumulated by Baphia nitida. The levels of Cd, Cr and Zn in soil were 27.97–61.33, 24.97–45.43 and 148.57–251.50 mg/kg, and their concentrations in B. nitida were 16.18–27.13, 97.99–164.07 and 0.10–16.52 mg/kg, respectively. There were significant correlations between Cd and Cr and Cd and Zn in soil, as well as between Cd and Cr in plants. The concentration of Cd in soil reflected a state of pollution relative to Dutch criteria for soil and the FAO/WHO Codex Alimentarius Commission.  相似文献   

19.
In dune slacks in The Netherlands, a decline of rare mesotrophic basiphilous plant species and their plant communities has been observed in combination with an increase of more productive systems with common, taller acidophilous plant species. This has been attributed to both natural and anthropogenic changes. In a humid climate with a precipitation surplus, as in The Netherlands, the calcium carbonate content of a calcareous soil increases with depth. However, soils in coastal dune slacks, may have a higher carbonate content in the topsoil horizon than in the underlying layers. Carbonates which buffer the pH can prolong the presence of mesotrophic basiphilous plant communities which are of high conservation value. To explain the occurrence of calcareous surface horizons in dune slacks, hydrological and micromorphological analyses were carried out in three dune slacks. Two slacks are situated on the Wadden Sea islands in the northern part of The Netherlands; one on Schiermonnikoog and one on Texel. The third slack is situated in the dunes on the island of Goeree in the southwestern part of The Netherlands. In all three slacks, carbonate occurs as mollusc and gastropod fragments (silt- or sand-sized) and as micritic nodules in the topsoil layer, due to aeolian deposition and sedimentation by water.In situ carbonate accumulation (calcitans and calcareous crusts) due to CO2 release in inundated and/or capillary rise of calcareous groundwater near, or at the soil surface. Accumulation of carbonate also occurs as a result of biological activity by algae in the topsoil of the Goeree site. In general, hydrological processes maintaining high levels of calcareous groundwater are a prerequisite for the maintenance of high carbonate levels in topsoils. Such levels are necessary for the conservation and management of basiphilous pioneer vegetation.  相似文献   

20.
Plant volatiles affect oviposition by codling moths   总被引:4,自引:0,他引:4  
Summary. Oviposition in wild codling moth females, collected as overwintering larvae from apple, pear and walnut, was stimulated by volatiles from fruit-bearing green branches of these respective hostplants. Analysis of headspace collections showed that eight compounds present in apple, pear and walnut elicited a reliable antennal response in codling moth females: (E)--ocimene, 4,8-dimethyl-1,(E)3,7-nonatriene, (Z)3-hexenyl acetate, nonanal, -caryophyllene, germacrene D, (E,E)--farnesene, and methyl salicylate. Any one of these compounds is found in many other non-host plants, and host recognition in codling moth is thus likely encoded by a blend of volatiles. A large variation in the blend proportion of these compounds released from apple, pear and walnut suggests a considerable plasticity in the female response to host plant odours. Wild females, collected as overwintering larvae in the field, laid significantly fewer eggs in the absence of host plant volatiles. The offspring of these females, however, reared on a semi-artificial diet in the laboratory, laid as many eggs with or without plant volatile stimulus. Tests with individual females showed that this rapid change in oviposition behaviour may be explained by selection for females which oviposit in the absence of odour stimuli, rather than by preimaginal conditioning of insects when rearing them on semi-artificial diet. Oviposition bioassays using laboratory-reared females are therefore not suitable to identify the volatile compounds which stimulate egglaying in wild females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号