首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heavy metals, a highly polluting group of constituents known to exert adverse effects, tend to accumulate in living organisms. The objective of this study was to determine the accumulation and translocation of heavy metals in soil and in paddy crop irrigated with lake water compared to soil and paddy crop irrigated with bore-well water. The quantities of heavy metals (Cd, Cr, Cu, Pb, Zn, As, Mn, and Hg) were determined in different parts of rice plants (Oryza sativa). Results revealed that the mean levels of soil Cd, Cr, Pb, Zn, As, Mn, and Hg in experimental soil and in different parts of rice plant (root, straw, and grain) were higher than the control except for Cu. The content of eight toxic metals was significantly higher in root than in aerial parts of the rice (straw and grains). Rice roots were enriched in Cd, As, Hg, and Pb from the soil, while Cr, Cu, Zn, and Mn were hardly taken by the roots. Bioaccumulation factor for Hg was significantly higher than other heavy metals. Metal transfer factors from soil to rice plants were significant for Cd, Cr, Cu, Pb, Zn, As, Mn, and Hg. The concentrations of metals in lake water were found to be within the permissible limit of Indian standard prescribed by Central Pollution Control Board (2000), except for Hg and As, which were higher than the limit of Indian standard. However, the concentrations of heavy metals in soil and rice grains were still below the maximal levels, as stipulated by Indian Prevention of Food Adulteration Act (PFA, 1954) and World Health Organization (WHO, 1993) guidelines.  相似文献   

2.
Heavy metals pollution in aquatic environments is a major problem contributing to human health issues. The study of these pollutants through bioindicators such as the oyster Crassostrea iredalei is important for (1) determining the levels and sources and (2) regulating the quantity of pollutants. The concentrations of cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), and lead (Pb) in tissues of C. iredalei, sediment and surrounding water was measured, and data was analyzed to determine the relationship between sampling periods and between oyster tissue, sediment, and water. The highest concentration of metals in oyster tissue was Zn, followed by Cu, Mn, Cd, and Pb. Concentrations of Cd, Cu, and Zn exceeded the maximum level allowed according to the Malaysian Food Act of 1983, which is equivalent to the WHO recommended levels of heavy metals in organisms used for consumption. The highest metal concentration in sediment was Mn followed by Zn, Pb, Cu, and Cd. Concentrations of heavy metals in surrounding water were Zn, Pb, Cu, Mn, and Cd. There was no correlation between metal concentration in oyster tissue and in sediment for all five metals.  相似文献   

3.
Metal concentrations were determined in water, sediment, and freshwater fish samples (Squalus cephalus, Barbus esocinus, and Barbus xanthopterus) collected from Karakaya Dam Lake, Turkey, to estimate the risk of human consumption and pollution. Metal concentrations differed between the species (p??Zn?=?Cu in water and Fe?>?Zn?>?Mn?>?Ni?>?Cu in sediment. In general, the accumulation order of elements in the tissues all of the species sampled were found as Fe?>?Zn?>?Se?>?Mn?>?Cu?>?Ni?>?Cd in muscle, Zn?>?Fe?>?Mn?>?Se?>?Cu?>?Ni?>?Cd in gills, Fe?>?Zn?>?Se?>?Mn?>?Cu?>?Ni?>?Cd in liver and gonad, and Zn?>?Fe?>?Cu?>?Mn?>?Se?>?Ni?>?Cd in kidney. It was concluded that the fish from the dam lake are not heavily burdened with metals, but they should be controlled periodically to avoid excessive intake of trace metals by humans, and to monitoring the pollution of aquatic environment.  相似文献   

4.
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg?1) of 0.13–0.63 for Cd, 11.89–21.90 for Co, 48.65–81.84 for Cr, 21.26–36.60 for Cu, 299.59–683.48 for Mn, 22.43–35.39 for Ni, 10.68–36.59 for Pb, 50.28–199.07 for Zn and 8.09–65.34 for Hg (in ng g?1), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg?1) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g?1), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.  相似文献   

5.
The Bursa region of Turkey has important agricultural production areas. Animal producers use agricultural fields in this region for disposal of manure. Therefore, in this study the concentrations of the seven trace metals Zn, Mn, Cu, Ni, Cr, Pb, and Cd in 324 animal feed and manure samples from three dairy cattle, three laying hens farms, and three broiler farms have been determined. The average concentrations in dairy cattle manure were 130 (Zn), 150 (Mn), 4.2 (Cu), 6.8 (Ni), 44 (Cr), 0.8 (Pb), and 0.09 (Cd) mg kg?1 dry weight; for laying hens manure 240 (Zn), 190 (Mn), 0.63 (Cu), 3.8 (Ni), 30 (Cr), 0.55 (Pb), and 0.12 (Cd) mg kg?1 dry weight; and for broiler manure 240 (Zn), 280 (Mn), 1.4 (Cu), 3.8 (Ni), 35 (Cr), 3.4 (Pb), and 0.16 (Cd) mg kg?1 dry weight. The calculated trace metal loading rate indicated that manure application might pose a potential risk to agricultural fields according to the current soil protection regulations of Turkey.  相似文献   

6.
In this study, autopsy tissue samples from human liver and kidneys were analysed for Cd, Cu, Pb, Zn, Hg and Mn in 25 subjects (16 males and 9 females) ranging in age from 2 to 70 years. Tissue samples that were pathologically normal were obtained at postmortem and concentrations of metals were determined. In both kidneys and liver, the concentrations of metals followed the order Cd > Hg > Pb > Zn > Mn > Cu irrespective of gender and age group, except in female kidneys where the order was Cd > Pb > Hg > Zn > Mn > Cu. Generally, males had higher concentrations of metals in both the kidneys and liver. Significant correlations of the metals were found in kidney and liver tissues.  相似文献   

7.
To know the interrelationship between some metals in different ecosystem components (water, sediment, aquatic plant and fish), many samples from these components were collected from four bights at the Nasser Lake, Egypt, and analyzed for Fe, Mn, Zn, Ca, Mg, Pb, Cd, Ni, Co, Cu and Cr using atomic absorption spectrophotometer. Different distribution factors (bioaccumulation factor – BF, discrimination factor – DF and enrichment factor – EF) were applied on the results of analysis. Data showed that the relatively high concentration of measured metals in water samples are derived from fish farms, and discharge of tourism and trade ships. Applying single leaching sequential technique on sediment samples, using different extracting solutions, revealed a strong ability of trace metals to adsorb on or co-precipitate with amorphous Fe/Mn oxides. High concentrations of Fe, Mn, Co and Ni were measured in the intestine while high Cd and Cr concentrations were recorded in the stomach in both Tilapia (nilotica and galilea). Tilapia galilea accumulated high Pb, Cu and Zn concentrations in their stomach, while in nilotica high concentrations of Pb, Cu and Zn were measured in the intestine, liver and muscles, respectively. Myriophyllum spicatum (an aquatic plant) in the lake recorded high concentrations of Fe, Mn and Zn. Bioaccumulation factors of studied elements in the different bights components indicate that the elevated concentration of measured elements in the aquatic plant and Tilapia (nilotica and galilea) are derived from water, reflecting the increase of human activities in Nasser Lake in recent years. However, the present study concluded that all the elements studied were still below the natural back-ground levels, except Zn and Cu.  相似文献   

8.
The depuration of 12 trace metals in the mantle, gill, digestive gland, and kidney of Crassostrea gigas and C. virginica was investigated under natural field conditions; oysters from a relatively contaminated environment (Redwood Creek in south San Francisco Bay) were transplanted to a relatively clean environment (Tomales Bay). In the transplanted oysters, the digestive gland and kidney depurated Cd, Cu, Hg, Ag, and Zn more readily than the mantle and gill. Other trace metals As, Fe, Mn, Ni and Se showed varying depuration patterns. The results for Cr and Pb were inconclusive, since initial concentrations were too low to follow any losses. Interspecific differences in trace metal depuration were observed. Biological half-lives for most trace metals were on the order of 23 to 60 d for C. gigas and on the order of 70 to 180 d for C. virginica.  相似文献   

9.
Rieselfelder     
Soils of the large sewage farm area south of Berlin are contaminated with heavy metals such as Cd, Cr, Cu, Hg, Ni, Pb, Zn. Based on earlier studies the total amount and the bioavailable proportions of heavy metals in soil samples were analysed. In some samples very high levels of total heavy metal concentrations were detected. For Pb, Cd, Cu and Hg the maximum values were 1360, 29.7, 817 and 40.8 mg/kg soil dry matter, respectively. The biovailable fractions of heavy metals which were found primarily in the acetate and EDTA fractions and to a lesser degree in the water extract account for about 50 % (Pb, Ni), 70 % (Cd) or 90% (Zn) of their total amount and may therefore pose a considerable environmental risk.  相似文献   

10.
Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden   总被引:1,自引:0,他引:1  
Urban soils are complex systems due to human activities that disturb the natural development of the soil horizons and add hazardous elements. Remediation projects are common in urban areas and guideline values are set to represent a desired level of elements. However, the natural content of trace elements may not always equal the desired levels. In this study, an attempt is made to distinguish between metals that are present in the soil due to natural origins and to anthropogenic origins. Seventy-five soil samples of the 0–5, 5–10 and 10–20 cm layers were collected from 25 sites in urban areas of Uppsala City and analysed for aluminium (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), tungsten (W) and zinc (Zn) using aqua regia for digestion. In order to highlight elements of geological origin, the results were compared to a similar study carried out in Gothenburg City, which has about three times as many inhabitants as Uppsala and has a more industrial history. A cluster analysis was also performed to distinguish between elements of natural and anthropogenic origin. Contents of As, Al, Fe, Cr, Ni, Mn and W in Uppsala were concluded to be of mainly geological origin, while contents of Cd, Cu, Zn, Pb and Hg seemed to have been impacted upon by mainly urban activities.  相似文献   

11.
淮南市城区地表灰尘重金属分布特征及生态风险评价   总被引:5,自引:0,他引:5  
城市地表灰尘中重金属会对人体健康和生态环境产生危害,为研究城市中不同功能区地表灰尘重金属的含量和潜在生态危害水平,以典型煤炭资源型城市淮南市的地表灰尘为研究对象,采集工业区、商业区、交通区、文教区、居住区和公园绿地等6种功能用地共40个点位的地表灰尘。采用电感耦合等离子体发射光谱(ICP-OES)和DMA-80直接测汞仪测定Zn、Pb、Cu、Cr、Cd、Ni、Co、V、Hg的含量,分析其在不同功能区地表灰尘中的分布特征、相关性及可能的来源;并应用潜在生态危害指数法对重金属在不同功能区的潜在生态危害进行评价。结果表明:1)淮南市地表灰尘中 Zn、Pb、Cu、Cr、Cd、Ni、Co、V、Hg的平均质量分数分别是202.59、74.63、62.74、110.69、0.57、35.82、12.18、50.95和0.105 mg·kg-1,其中Zn、Pb、Cu、Cr、Cd、Ni、Hg的平均含量分别是淮南市土壤背景值的3.47、3.17、2.04、1.21、9.50、1.12、2.56倍,是中国土壤背景值的2.73、2.87、2.78、1.81、5.88、1.33、1.62倍。2)9种重金属中,Zn和V的含量在不同功能区分布相对均匀,其他重金属在不同功能区含量均表现出较明显的空间异质性。3)不同功能区中,Zn、Pb、Cu、Ni、Co、V、Hg的平均含量在工业区最高,Cr 和 Cd 的平均含量在交通区最高。4)不同重金属的相关性表明,Zn、Pb、Cu、Cd、Ni 等5种元素有同一来源,Co 和 V 有同一来源。5)单项潜在生态危害系数大小为 Cd〉Hg〉〉Pb〉Cu〉Ni〉Co〉Zn〉Cr〉V。不同功能区9种重金属复合生态危害均处于强生态危害水平(300≤RI〈600),其中工业区和交通区潜在生态危害水平最高。  相似文献   

12.
Heavy metal concentrations (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined in various tissues (hepatopancreas, branchial hearts, salivary gland, gills, genital tract, mantle, arms and skin) of Octopus vulgaris collected from three different contaminated sites in front of Alexandria (Egypt) during 2000. All collected tissues displayed high enrichment factors when compared to ambient levels. Heavy metal concentrations in most tissues displayed significant differences among sites, sizes and sex. This study suggests that hepatopancreas, and to a lesser extent branchial hearts, are better indicators of chronic Cu, Fe, Zn and Cd contamination than edible tissues. The enrichment factor (EF) for heavy metals in the hepatopancreas and in edible tissues allowed discriminating our samples into three main groups; (1) EF?>?55 (Cu), (2) EF ranging from 15 to 7.5 (Fe, Cd and Zn) and (3) EF?相似文献   

13.
Nine potentially harmful heavy metals (Cd, Co, Cr, Cu, Hg, Mn, Pb, Ni, and Zn) were measured in 477 topsoil samples collected from urban–rural areas in the city of Wuhan in order to identify their concentrations and possible sources, and characterize their spatial variability for risk assessment. Results showed that in most rural areas heavy-metal concentrations in soil were similar to their natural background values, but Cd, Cu, Hg, Pb, and Zn concentrations were relatively higher in densely populated districts and around industrial facilities. Multivariate analyses (correlation matrix, principal component analysis, and cluster analysis) indicated that Cd, Cu, Hg, Pb, and Zn were mainly derived from anthropogenic inputs, and Co, Cr, and Mn were controlled by natural source, whereas Ni appeared to be affected by both anthropogenic and natural sources. The result of risk assessment indicated that nearly 48% of the study area suffered from moderate to severe contamination.  相似文献   

14.
In this study, we investigated the concentrations of ten trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As) and their trophodynamics in a benthic food chain of Deer Island, Northern Yellow Sea. The concentrations of Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As in the food chain ranged from 3.2 to 23.2, from 71 to 227, from 7.4 to 45.6, from 0.44 to 5.80, from 0.73 to 7.60, from 0.14 to 1.65, from 0.68 to 6.70, from 0.08 to 1.86, from 0.08 to 1.18, and from 0.24 to 3.92 mg kg?1 dry weight, respectively. Among these trace elements, the linear regression between the log-transformed concentrations of Hg and Cd and δ15N values showed statistically significant increase (p<0.05) with the slopes of 0.134 and 0.144, indicating biomagnification of Hg and Cd occurred in the benthic food chain of Deer Island. While the linear regression for other eight trace elements (Cu, Zn, Mn, Se, Ni, Cr, Pb and As) were characterised by extensive scatter with non-significant correlation coefficients (R 2=0.002–0.235) and slopes (p=0.079–0.875), indicating there were not biomagnified or biodiluted of these trace elements.  相似文献   

15.
钱晓佳  段舜山 《生态环境》2010,19(9):2123-2129
为了研究珠江口近海海域重金属的污染状况,2009年8—12月对珠海珠江口4个站点的表层沉积物进行了6次采样,测定了表层沉积物中重金属Cd、Cr、Pb、Hg、Cu、Zn、Mn、Ni、Fe和金属Al的质量分数,分析了它们质量分数间的相关性,依据Lars Hakanson提出的沉积物中金属污染物评价方法,对Cd、Cr、Pb、Hg、Cu和Zn等6种典型重金属的潜在危害进行了评价。结果表明,Cd、Cu和Zn是该调查区域的主要重金属污染物,应该予以优先控制和治理。位于马骝洲水道入海口的S1位点上,金属元素(Cd除外)质量分数的季节特征是秋季(丰水期)〈冬季(枯水期),重金属危害指数(RT)为轻微级,重金属潜在生态危害系数(Eir)顺序为Cd〉Hg〉Pb〉Cu〉Zn〉Cr;在S2位点,Cd、Cu、Hg、Ni和Fe的平均质量分数为秋季〉冬季,其它5种金属则为秋季〈冬季,RT为强级;在S3、S4位点上,8种金属元素(Hg、Mn除外)的质量分数呈现秋季〉冬季的现象,RT为很强级;S2、S3和S4站点的Eir均表现为Cd〉Hg〉Cu〉Pb〉Zn〉Cr的顺序。  相似文献   

16.
典型野生食用菌重金属含量及其人体健康风险评价   总被引:1,自引:0,他引:1  
土壤重金属污染是影响生态环境、食品安全和人体健康的重要因素.云南省土壤重金属背景值较高,且矿产资源丰富、采矿活动频繁,导致土壤重金属含量较高.野生食用菌是高效重金属储积器,云南是中国野生食用菌最大产区.因此,本文以云南省8种典型野生食用菌为研究对象,探究其重金属含量(汞、镉、铅、锌、铜、砷)与分配特征,采用单因子污染指...  相似文献   

17.
This study evaluated the potential toxicological risk posed to human health due to the exposure to heavy metals by water ingestion in an area affected by tanneries – the Cadeia-Feitoria hydrographic basin (Brazil). River water was collected at 10 sites, every 3 months, from July 1999 to April 2000. After acid digestion, total metal concentration was determined by inductively coupled plasma optical emission spectrometry (Cd, Cu, Cr, Ni, Zn), flame atomic absorption (Al, Fe, Pb, Mn), or cold vapor atomic absorption spectrometry (Hg). Cr(VI) was complexed with diphenyl-carbazide and detected by UV–vis spectrometry. In order to quantify the risk of exposure, the risk assessment methodology employed by the Environmental Protection Agency of the United States was applied at a screening level. The assumed scenarios included extreme exposure patterns (ingestion of untreated water, conversion of Cr(III) to Cr(VI), temporal peaks of pollution). Fe, Al, Cd, Hg, and Pb were not included in the risk analysis, since they showed a low toxicity potential or were undetected in the samples. The selected metals presented Hazard Quotients < 1, in the following order of increasing risk: Cu < Cr(III) < Zn < Ni < Mn < Cr(VI). Hazard indexes, representing the additive effect of contaminants, were also low in the basin (< 1), but comparatively increased in the lower reach of Feitoria and Cadeia Rivers. Although noncarcinogenic risk levels did not suggest possible adverse toxicological effects to the human population, a considerable deviation from background conditions was observed downstream the area where tanneries are mainly located.  相似文献   

18.
张军  陈功锡  杨兵  廖斌 《生态环境》2011,(6):1133-1137
宝山堇菜Viola baoshanensis Shu,Liu et Lan是一种Cd超富集植物,但它对不同重金属的吸收和转运能力有待进一步研究。从湖南桂阳宝山多金属矿区中筛选4个宝山堇菜优势分布的小生境,分析这些生境中宝山堇菜及其根区土壤的重金属质量分数。化学分析结果显示,宝山堇菜优势分布土壤中Cd、Pb、Zn、Cu、Mn和Fe的平均质量分数(mg/kg)分别为471、15 044、8 273、1 776、4 702和69 054。宝山堇菜地上部Cd、Pb、Zn、Cu、Mn和Fe的平均质量分数(mg/kg)分别为387、1 077、1 037、99、379和1 812,其中Cd、Pb超过超富集植物标准,Zn、Cu的平均质量分数大约是Zn、Cu超富集植物标准的10%,Mn的平均质量分数低于Mn超富集植物标准的5%,Fe的平均质量分数高于1 000 mg/kg。上述结果表明,宝山堇菜可以超富集Cd和Pb,富集Zn、Cu和Fe以及低积累Mn。此外,宝山堇菜对不同重金属差别化吸收模式可能也代表了超富集植物适应重金属复合污染土壤的一种策略。  相似文献   

19.
珠江三角洲养殖鱼塘水体中重金属污染特征和评估   总被引:2,自引:0,他引:2  
为了解珠江三角洲主要养殖环境中重金属含量及潜在生态危害程度,用电感藕合等离子质谱法和原子荧光法测定了肇庆、广州、惠州和茂名4市14个样点沉积物中7种元素的水体及底泥总量,并对底泥中主要重金属污染状况及潜在生态风险进行了评价。结果表明:养殖鱼塘水体中Cr质量浓度范围是nd-0.1011 mg·L-1,超标率为7.1%,Cu质量浓度范围为nd-0.1438 mg·L-1,超标率为64.3%,As质量浓度范围是0.0112-0.0812 mg·L-1,超标率为24.1%,Hg质量浓度范围是0.00004-0.00458 mg·L^-1,超标率为35.7%,Pb质量浓度范围为nd-0.0973 mg·L^-1,超标率为6.8%,其余Ni、Zn和Cd质量浓度范围分别为nd-0.0218、nd-0.0232和nd-0.00319 mg·L^-1,均未超渔业水质标准;底泥中重金属元素Cr、Cu、Zn、As、Hg、Cd和Pb的平均值分别为83.86、46.19、242.16、32.38、0.64、1.00和60.06 mg·kg^-1,地积累指数评价结果显示,表层沉积物重金属污染程度顺序为Cd>Hg>Zn>Pb>As>Cu>Cr,其中,Cd污染程度为中-强,是底泥污染最严重的元素。潜在生态风险指数分析,单项潜在生态风险指数生态风险均值排列顺序为 Hg>As>Cd>Pb>Cu>Zn>Cr。对区域综合潜在生态风险指数RI的贡献率最大的元素为Hg、As和Cd。4个市底泥潜在生态风险综合指数(RI)比较,惠州(290.13)>广州(240.54)>茂名(193.23)>肇庆(116.40)。Hg和Cd是该水域污染和潜在生态风险最大的元素。  相似文献   

20.
南京城市土壤重金属含量及空间分布特征   总被引:13,自引:0,他引:13  
研究了南京城市土壤重金属含量、来源及空间分布特征。结果表明,南京城市土壤中V、Mn、Co、Ni、Cr污染不明显,但受到了不同程度的Cu、Pb、Zn、Sb、Hg、Cd污染,其中Hg污染比较严重。V、Mn、Co、Ni、Cr含量之间均呈极显著正相父;Cu、Pb、Zn、Sb、Hg、Cd含量之间也均呈极显著正相关。南京城市土壤V、Mn、Co、Ni、Cr主要继承了原土物质;Hg、Cd、Pb主要来源于城市燃煤、机动车尾气及工厂排放粉尘;Sb主要来源于机动车尾气和工厂排放粉尘。南京城市土壤Hg、Cd、Pb、Sb含量空间分布规律非常相似,均表现为外围向市中心有逐渐增加的趋势,并且在新街口—鼓楼、梅山硫铁矿形成异常高值的岛状、环状区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号