首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study determined the heavy metal concentration in soil and plants at a bone char site in Umuahia, Nigeria. Soil and plant samples collected in a randomized complete block design (RCBD) were analyzed for zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), and arsenic (As). The concentration of metals in soil and plants in the vicinity of the bone char site are as follows: Zn (172?mg?kg?1) and Ni (0.62?mg?kg?1) in soil were highest at site P3, Pb (2.37?mg?kg?1) and As (0.08?mg?kg?1) at site P1, and Cd (18.30?mg?kg?1) at site P2. In plants, the concentrations of Zn (41.17?mg?kg?1) and Cd (3?mg?kg?1) were highest in Albizia ferruginea, Ni in Dialium guineense (0.09?mg?kg?1), while Pb was in D. guineense (0.08?mg?kg?1) and Spathodea companulata (0.06?mg?kg?1). The levels of Zn, Cd, Pb, Ni, and As in soil ranged from 11.2 to 172, 2.68 to 18.2, 0.026 to 2.37, 0.33 to 0.62, and 0.02 to 0.08?mg?kg?1, respectively. In plants, the concentration of Zn, Cd, Pb, and Ni ranged from 2.01 to 41.17, 0.12 to 3, 0.02 to 0.08, and 0.03 to 0.09?mg?kg?1, respectively. There were significant correlations between Zn and Cd, and Pb and As in soil. The high concentration of Cd in soil might affect soil productivity.  相似文献   

2.
The study involved assessing the potential of the native plant species (Berkheya coddii) for the phytoextraction of nickel, palladium, and platinum contaminated sites. Plant and soil samples were randomly collected from Barberton area, near Agnes mine, Mpumalanga Province, South Africa. Samples were analysed for total nickel, palladium, and platinum concentrations together with other elements found in the soil and in the plants' roots, and leaves. Soil versus leaves and soil versus roots uptake of these metals by the plant were compared. The mean concentration of nickel in the leaves/canopy was found to be 13,980?±?10,780?mg?kg?1?dry mass, in the roots it was 2046?±?789?mg?kg?1 dry mass, and in the soil it was 1040?±?686?mg?kg?1?dry mass. This resulted in a mean concentration ratio in the leaves to soil of 13.44. The platinum mean concentration in the leaves was 0.22?±?0.15?mg?kg?1?dry mass, in the roots it was 0.14?±?0.04?mg?kg?1?dry mass, and in the soil it was 0.04?±?0.03?mg?kg?1?dry mass. This resulted in a mean concentration ratio in the leaves to soil of 5.5. Palladium was found to have a mean soil concentration of 0.07?±?0.045?mg?kg?1?dry mass. The mean concentrations in the roots and in the leaves were 0.18?±?0.07 dry mass and 0.71?±?0.52?mg?kg?1?dry mass, respectively. This gave a mean concentration ratio in the leaves to soil of 10.1 for palladium. Other elements that were found to have a mean concentration ratio in the leaves to soil of around 2.5 or above are sodium, potassium, magnesium, calcium, and sulfur. Berkheya coddii was found to be most efficient in accumulating nickel, palladium, and platinum from the soil. The results for the first time revealed that the plant may have the potential to uptake platinum and palladium; both metals are in the same group of the periodic table as nickel.  相似文献   

3.
This study aims to determine heavy-metal levels in soil from the banks of Lake Nasser, the ability of Tamarix nilotica to accumulate such metals from soil and hence its potential for phytoextraction. Soil and Tamarix samples were collected from the banks of four bights around Lake Nasser and analysed for Fe, Mn, Ca, Mg, Cr, Cu, Ni, Zn, Cd and Pb by atomic absorption spectrometry, whereas Na and K were measured by atomic emission spectrophotometry. Three different methods of extraction were used for the soil samples. Lead, copper and zinc were equally distributed between the exchangeable phase and Fe/Mn oxide-bound form, while other measured metals were mainly present in the Fe/Mn oxide fraction. With the exception of iron, all metals studied showed total concentrations within the geochemical background values. T. nilotica exhibited elevated concentrations of Na (36.2–48.5?mg?g?1) and K (2.74–4.33?mg?g?1) in stems, and relatively high concentrations of Pb, Cd and Co (0.39–1.03?µg?g?1, 0.24–1.3?µg?g?1 and 1.94–5.3?µg?g?1, respectively) are found in plant leaves. Bioaccumulation factors of Na and K (9.3 and 12.63, respectively) were high in T. nilotica stems. While the bioaccumulation of Pb, Cd, Co and Ni (2870.1, 2035.4, 10.5 and 5313.2, respectively) was high in plant leaves, Fe, Mn, Ca and Mg were accumulated relatively equally in plant stems and leaves. T. nilotica was found to secrete high amounts of Na, Ca and K, in addition to small amounts of all accumulated metals except Cd and Cu. These secreted metals appeared as salt crystals (67.5% Na; 25.8% Ca; 5% Mg; 1.5% K and 0.16% trace and minor elements) on the plant surface. The concentrations of all the metals studied in T. nilotica were higher than in the salt crystals. Statistical analysis of the database suggests bioaccumulation of these metals from soil to T. nilotica. This reflects the importance of using T. nilotica as a model in the phytoremediation process as an established environmental clean-up technology.  相似文献   

4.
The concentration and potential ecological risk of Mn, Zn, Cu, and Cd in the surface soils (0–30?cm) belonging to 12 soil profiles and 4 soil types (Vertisols, Chernozems, Calcisols, and Cambisols) from the cultivated soils and the corresponding uncultivated soils were investigated. Long-term cultivation caused a considerable build-up diethylene-triamine pentaacetic acid (DTPA)-extractable Mn (7–55%), and Cd (12–31%) as well as the total form of Zn (3–14%), Cu (8–25%), and Cd (33–78%) in all soil types. Following long-time cropping, total Zn (mean?=?73?mg?kg?1), Cu (mean?=?33?mg?kg?1), and Cd (mean?=?3.14?mg?kg?1) and DTPA Zn (mean?=?1.2?mg?kg?1) and Cu (mean?=?2.44?mg?kg?1) were below their maximum allowable limits. However, the average amount of DTPA Cd in the tilled soils (min?=?0.4, max?=?0.75, mean?=?0.55?mg?kg?1) was above its maximum permissible limit mainly due to the over application of phosphate fertilisers and the pesticides. Considering the potential ecological risk (RI) assessment of the cultivated soils (min?=?44, max?=?70, mean?=?54), the soil types were categorised as low (RI?≤?50) to moderate (50?相似文献   

5.
A factorial design with different levels of elemental S and cow manure was used to investigate the effects of S and manure on SO4-S, P and micronutrient availability in a calcareous saline–sodic soil. The results revealed that the recovery of SO4-S increased significantly (p≤0.05) in all treatments as elemental S increased, particularly when in combination with manure. The interactional effects of S° and manure application rates resulted in a decrease in soil pH of 0.1 to 0.9 units and increases in soil EC from 0.1 to 2.6 dS m?1 as result of an increase in the number of oxidisers and the oxidation rate of elemental S. Application of S° in combination with manure led to an increase in soil-available-P (0.6–40 mg kg?1), DTPA-Zn (0.2–3.9 mg kg?1) and DTPA-Fe (0.1–5.6 mg kg?1).  相似文献   

6.
Persistence of cypermethrin and chlorpyriphos in okra and soil were studied following the application of pre-mix formulation of insecticides Action 505EC (chlorpyriphos 50%?+?cypermethrin 5%) at single (275?g a.i.?ha?1) and double dose (550?g a.i.?ha?1). The average initial deposits of chlorpyriphos in okra were observed to be 0.07 and 0.15?mg?kg?1 in single and double dose, respectively, which dissipated to 92% after 10 days for both the dosages. Residues of soil under okra crop were found to be 0.15?mg?kg?1 at the single and 0.36?mg?kg?1 at the double doses. These residues persisted up to 3 days at single and 5 days at double dose. The half-life (t 1/2) periods of chlorpyriphos on okra and soil were observed to be 0.6 days and 1.9 days for single and double dose, respectively. Residues of chlorpyriphos reached below detectable level (BDL) of 0.01?mg?kg?1 in okra fruits after 7 days at single dose and in 15 days in double dose. In soil, residues of chlopyriphos persisted up to 5 and 7 days in single and double dose, respectively. Following foliar applications of a insecticide formulation (Action 505EC, (chlorpyriphos 50%?+?cypermethrin 5%) on okra at @ 275 and 550?g active ingredient (a.i.)?ha?1 resulting in active applications of chlorpyriphos at the rate of 250 and 500?g a.i.?ha?1 the average initial deposits of chlorpyriphos in okra were observed to be 0.07 and 0.15?mg?kg?1, respectively. These residue levels dissipated to 92% after 10 days at both the dosages. Residues of soil under the okra crop were found to be 15?mg?kg?1 at the single and 36?mg?kg?1 at the double dose. The residues persisted up to 3 days at the single and 5 days at the double dose. The half-life (t 1/2) periods of chlorpyriphos on okra were observed to be 0.6 days for application rates, and 1.9 days for soil. Okra fruits and soil samples collected on the 7th and 15th day after application did not show any chlorpyriphos residues above their determination limits of 0.01 and 0.005?mg?kg?1, respectively.  相似文献   

7.
Metal contents of waste mobile phones represent a major environmental risk, especially considering the adoption of inappropriate management options in developing countries including open burning and disposal into surface water bodies. In this study the metal contents of mobile phone printed wiring board (PWB) samples were assessed. Sixty-two waste mobile phones of 15 brands were collected, dismantled, and their PWB samples were analyzed for Cu, Pb, Ag and Cd. The metal concentrations in the samples varied widely between and within brands. Among these metals, Cu and Pb were found to be at very high concentrations. The range (mean?±?SD) of Cu and Pb concentrations were 94.1–532?g?kg?1 (250?±?92.3?g?kg?1) and 7.0–46.2?g?kg?1 (20.1?±?8.4?g?kg?1), respectively. All Cu and Pb concentrations exceeded toxicity threshold limit concentration (TTLC) regulatory limits used in characterizing wastes as hazardous in the state of California, USA. The mean Cu and Pb concentrations exceeded the corresponding TTLC limits by factors of 100 and 20, respectively. The Ag and Cd concentrations were in the range 59.4–759?mg?kg?1 (mean 227?±?104?mg?kg?1) and ND – 15.6?mg?kg?1 (2.1?±?3.3?mg?kg?1), respectively.  相似文献   

8.
About 500 samples of coal, pyritic coal balls, pyritic gangue and coal seam gangue were collected from different coal basins and geologic periods of coal formation to determine the arsenic (As) content and distribution pattern in China. The Permian-Carboniferous and Jurassic coals in the North China Plate and Northwest China account for nearly 85% of total Chinese coal reserves and data showed that As content ranged from 0.1 to 94?mg?kg?1, with the majority between 1 and 14.9?mg?kg?1. The As content of some Late Permian coals in Southwest Guizhou Province and stone coal in the South Qinling Mountain area were exceedingly high (30–534?mg?kg?1), but the majority of coal in the Southwest Guizhou Province contained low to medium amounts. Only the coals, which are situated in or near igneous rocks and are not considered a part of Chinese coal reserves, possessed unusually high As content (>30?mg?kg?1). Arsenic was also concentrated in pyritic coal balls and the pyritic gangue of the coal seam with values ranging from 21.5 to 142.46?mg?kg?1 and an average of 69?mg?kg?1 in Shaanxi and 78?mg?kg?1 in Shandong. Arsenic contents in coal gangue in the Northwest and North China Plate is about 0.2–15?mg?kg?1, a little lower than coals in the same seam. Washing gangue (waste from coal washing) generally contained more As than coal, because the washed gangue has more pyrite than the natural gangue (black shale). Washing coal reduced the content of the pyritic sulfur, heavy metals and As. Based on amounts of coal used with different As content in Chinese coal reserves, the average As content of Chinese coals is about 4.5?mg?kg?1.  相似文献   

9.
High-performance liquid chromatography-mass spectrometry and inductively coupled plasma mass spectrometer (ICP-MS) methods were used for determination of histidine and lead in leaves of six plant species taken from industrial areas, including Gaziantep and Bursa cities, Turkey. For extraction of histidine from plant samples, ultrapure water was used at 90°C for 30?min. Using optimum conditions of 0.2?mL?min?1, 70?V, 15?µL and 20°C, concentrations of histidine (in mg?kg?1) were found to be between 2 and 9 for Morus L., 6 and 13 for Robinia pseudoacacio L., 2 and 10 for Populous nigra L., 3 and 10 for Thuja, 1 and 11 for Cupressus arizonica and 4 for Cedrus libani. Concentrations of lead were in the ranges of 4–378?mg?kg?1 for Morus L., 1–122?mg?kg?1 for R. pseudoacacio L., 1–14?mg?kg?1 for P. nigra L., 1.6–224?mg?kg?1 for Thuja (Cupressaceae), 1.5–57?mg?kg?1 for C. arizonica and 1.8?mg?kg?1 for C. libani. Related with correlation coefficient, significant linear correlation for Thuja (Cupressaceae) (r?=?0.81) and insignificant linear correlation for P. nigra L. (r?=?0.50) were seen. Further, the leaves of Morus L., Thuja and R. pseudoacacio L. have a potential as biomonitor and/or hyperaccumulator for Pb because the rates of their maximum/minimum concentrations were found higher than 90.  相似文献   

10.
Trace amounts of heavy metals have been analysed by electrochemical techniques in ecstasy tablets obtained from different police seizures in Spain. Lead, cadmium, copper and zinc were determined by differential-pulse anodic stripping voltammetry at a hanging mercury drop electrode, whereas nickel and cobalt were determined by adsorptive differential-pulse cathodic stripping voltammetry from their dimethylglyoxime complexes, M(DMG)2. The performance of the procedure was compared with electrothermal atomic absorption spectrometry. The procedure was applied to the determination of these elements in nine ecstasy samples, finding that Zn is the element present in the highest concentration, ranging from 0.3 to 200?mg?kg?1, Ni, Cu appear below 15?mg?kg?1 and Pb below 8?mg?kg?1, while Cd and Co levels were always lower than 0.51?mg?kg?1.  相似文献   

11.
Urban areas in developing countries are facing vast environmental problems as a result of rapid urbanization and industrialization. Of major concern is the contamination of soils which are increasingly becoming sinks for environmental pollutants. However, to date only little is known about the pollution in the megalopolises of developing countries. The aim of this study was to assess the contamination and potential sources of metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Addis Ababa, the capital of Ethiopia. The investigation revealed the presence of most of the analyzed pollutants in soil and sediment samples with total concentrations (dry wt) of PAHs ranging from 186 to 3150?µg?kg?1, PCBs from 0.4 to 19?µg?kg?1, Cu from 14 to 173?mg?kg?1, Zn from 36 to 440?mg?kg?1, Pb from 9 to 700?mg?kg?1, and Ni from 16 to 72?mg?kg?1. In addition, polyaromatic sulfur heterocycles, typical for oil and petrol residues, were detected in several soil samples. Source identification approaches revealed that Pb, Zn, and Cu are most likely derived from pyrolytic sources, with elevated values in samples related to waste combustion and traffic emissions. Ni is most probably of geogenic origin. For PCBs it is indicated that they are derived from a single source. However, correlations with technical PCB mixtures were inconsistent. PAHs originate from the combustion of biomass, vehicular exhausts, and petrogenic sources.  相似文献   

12.
This study investigated the relative toxicity of water-based cuttings (WBC) and synthetic oil-based cuttings (SOBC) to the marine species, Metamysidopsis insularis. Results obtained indicate that SOBC (LC50 1.2 (0.85–1.6)%) was more toxic to M. insularis than WBC (LC50 9.9 (8.3–11.8)%), with similar metal contents in both types of cuttings. The elevated levels of metals found in the cuttings when compared to surficial sediments may be due to both drilling fluids, as well as the rock strata from which the cuttings were obtained. Furthermore, total petroleum hydrocarbon (TPH) analyses demonstrated significantly higher concentrations of TPH present in SOBC (14,680?±?1250?mg?kg?1) compared to WBC (860?±?115?mg?kg?1). This may also be due to the increased depth and hence oil bearing rock formations in the selected sampling area, along with the associated synthetic oil-based drilling fluid. These findings therefore supply evidence that drill cuttings after treatment prior to discharge are potentially toxic to marine organisms.  相似文献   

13.
Abstract

Salinity is a serious limiting factor for crop growth and production. The present study was conducted to investigate the response of wheat grown at salinities of 0.12, 0.30 and 0.60?S?m?1 on soil supplemented with 0, 0.5, 1 and 4?mg?kg?1 Se as selenite. Chlorophyll a and b, carotenoid contents, Fe, Zn and Se in shoots as well as shoot dry weight were negatively affected by increased salinity. Se had a dual effect: at 0.5?mg?kg?1, chlorophyll b, proline, and shoot Fe content were increased, catalase activity was stimulated; there was no effect on Zn content and shoot dry weight. At the two higher concentrations, Se led to decreases in chlorophyll content, nutrient concentration, and shoot dry weight. Thus, moderate addition of Se to soil could be a strategy to improve physiological responses and micronutrient status in wheat under salinity stress.  相似文献   

14.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

15.
This study determined the concentration of three heavy metals zinc (Zn), lead (Pb), and cadmium (Cd) in soil and in a woody plant species, Milicia excelsa, at Ishiagu quarry, Nigeria. The highest soil concentrations of Zn, Pb, and Cd in soil were obtained at 1?m from the quarry site. In M. excelsa, the highest concentrations of Zn, Pb, and Cd were 3.12–9.1, 3.9–6.01, and 0.51–1.12?mg?kg?1, respectively. There were significant positive correlations between Cd and Zn (r?=?0.963) and Cd and Pb (r?=?0.974) in plants as well as between Cd and Pb (r?=?9.84) in soil. The level of Cd in soil reflected significant pollution compared to average global concentrations in soils.  相似文献   

16.
The concentrations of lead and copper in sclerotium of the mushroom Pleurotus tuber-regium widely consumed in Southeastern Nigeria were determined. The specimens purchased from different markets were mineralized with H2SO4 and H2O2 and analyzed using flame atomic absorption spectrophotometer. The concentrations of Pb ranged from 0.2?±?0.1?mg?kg?1 to 0.8?±?0.5?mg?kg?1 with approximately 91% of the results being below 1?mg?kg?1. The concentrations of Cu ranged from 0.5?±?0.2?mg?kg?1 to 1.2?±?0.6?mg?kg?1 with 78% of the results below 1?mg?kg?1. The results were compared with the literature and levels set by regulatory authorities, with the conclusion that the consumption of sclerotium does not pose a toxicological risk. The low Pb content of the studied products would contribute to only about 1% of the provisional tolerable weekly intake of Pb. The Cu contents would contribute to nutritional intake of the metal in the general population. It is recommended that the outer layers of the sclerotia be properly scrapped before use to reduce metal contamination from exogenous sources.  相似文献   

17.
The aim of this study is to determine the contents of aluminum, iron, manganese, nickel, copper, zinc, chromium, cadmium, lead, and mercury in sediments at 1–30?m depths of the Band?rma and Erdek Gulfs in the Southern Inner Shelf of the Marmara Sea. Sediment samples were collected from different depths (1?m, 5?m, 10?m, 20?m, 30?m) at each region in February 2008. Primary hydrographic conditions, such as temperature (6.6–14.5°C), salinity (22.6–26.875 psu), percentage of dissolved oxygen saturation (35–83 %), and pH (8.0–8.4) were recorded for each sampling point. Moreover the total organic carbon (0.5–2.9%) and the total calcium carbonate contents (0.8–60%) of sediment samples were determined. In surface sediments of both gulfs, Pb (21–62?mg?kg?1) and Cd (0.52–0.86?mg?kg?1) contents were determined to be higher than the shale average (Pb 20?mg?kg?1, Cd 0.2?mg?kg?1) while the other metal contents were measured to be lower in general. On the other hand, generally Hg (0.06–1.1?mg?kg?1) contents were higher than the shale average (0.3?mg?kg?1)at all of the examined stations in the Band?rma Gulf and lower than the shale average in the Erdek Gulf.  相似文献   

18.
Soils from two typical tidal salt marshes with varied salinity in the Yellow River Delta wetland were analysed to determine possible effects of salinity on soil carbon sequestration through changes in soil microbiology. The mean soil respiration (SR) of the salt water–fresh water mixing zone (MZ) was 2.89 times higher than that of the coastal zone (CZ) (4.73 and 1.63?μmol?m?2?s?1, respectively, p?Pseudomonas sp. and Limnobacter sp. that might have led to its higher dehydrogenase activity and respiratory rates. Additionally, the CZ possessed more Halobacteria and Thaumarchaeota with the ability to fix CO2 than the MZ. Significantly lower soil salinity in MZ (4.25?g?kg?1) was suitable for β-Proteobacteria, but detrimental for Halobacteria compared with CZ (7.09?g?kg?1, p?相似文献   

19.
Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1–16 μmol O2 plant?1 h?1), Fe plaque formation (4,097–36,056 mg kg?1), Cd and As in root tissues (Cd 77–162 mg kg?1; As 49–199 mg kg?1) and Fe plaque (Cd 0.4–24 mg kg?1; As 185–1,396 mg kg?1) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.  相似文献   

20.
Residues of organochlorine pesticides (OCPs) namely 1,2,3,4,5,6-hexachlorocyclohexane isomers (HCH-isomers), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) and its metabolites, and endosulfan stereoisomers were analyzed in dry and green fodder samples from rural areas of Ambala, Gurgaon, and Hisar districts of Haryana, India during winter, summer, and post-monsoon seasons. The HCH isomers γ-HCH and β-HCH, and DDT and its metabolites p,p′-DDD, p,p′-DDE, and p,p′-DDT had more traceability in test samples as compared to other isomers and metabolites studied. Total OCPs (ΣOCPs), i.e., ΣHCH, ΣDDT, and Σendosulfan were found to be the highest in wheat straw (1.1–1.2?mg?kg?1) from Ambala and Gurgaon, followed by that in sorghum straw (0.46?mg?kg?1) from Hisar. Dry fodder samples were found to have relatively higher residue levels than green fodders. In case of green fodder samples, maximum ΣOCP residues of 0.44?mg?kg?1 were found in whole plant samples of sorghum from Gurgaon district followed by that in pearl millet (0.40?mg?kg?1) from Ambala. The findings indicate highly significant differences (p?>?0.0001) in ΣOCPs and ΣDDT in wheat straw between different districts and reveal the persistence of OCP residues in both dry and green fodder samples in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号