首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background Due to high safety measures in production, transport and storage of fuel oil it rarely occurs, that fuel oil will be released in the environment. One exception of this experience was the fuel oil releases of private fuel oil tanks during the “century flood” 2002 in Germany. By order of IWO (Institut für wirtschaftliche Oelheizung e.?V.), the authors investigated the environmental behaviour of fuel oil after flood incidents. Aim Due to the fast spreading of the fuel oil on water surfaces and the contamination of huge areas one expects large environmental harm. For appraisal the behaviour of fuel oil in water and soil must be studied in detail as well as the effect on high and low developed animals and plants, on water organisms and on the flora and fauna of soil. From the valuation of the environmental harm official measures and measures of precaution and safety by manufacturer and user of private fuel oil installations can be derived. Main features For considering the various aspects the authors studied the extensive analyses of the special measuring programme of Saxony-Anhalt, used interviews of concerned persons (private persons and officials), aerial photos, extensive study of literature including eco-toxicological investigations, experiences of more than 70-years applications of fuel oil in plant protection and practical experiences at large field redevelopment of oil damages following averages and accidents. The authors valuated on the base of results of analyses and on own calculations. Results The release of fuel oil in the air is no particular problem because about 40?% of the oil fast evaporate and will be decomposed to carbon dioxide and water. In addition to the evaporation a characteristic behaviour is fast spreading of the fuel oil on the water surface to very thin layers. For a typical coloured oil layer e.?g. one cubic meter of oil is spread on a water surface of about 3?km2, this corresponds to 3?ml/m2 surface and contaminates the soil after drying up with about 3?µg/kg soil some orders less than the natural content of hydrocarbons in soil. Because of the absorption capacity of soil and the microbial decomposition by everywhere existing hydrocarbons decomposing micro-organisms the oil infiltrates only a few centimetre and will be decomposed in a few months, so that ground water detriments not arise practically. By measurements a few months after fuel oil release in the flood 2002 oil components in the soil could not be detected. Discussion Acute injuries of micro-flora and -fauna in soil and water by fuel oil cannot be excluded from the first. Thus the limiting values of injuries for some water organisms are below 1?mg/l. According to the special measuring programme at the flood 2002 in Saxony-Anhalt however the measured values were mostly wide below of this limit. In detail the spreading and evaporation of fuel oil on water surfaces, the propagation and decomposition of fuel oil in soil will be described. A quantitative valuation of fuel oil distribution in a real flood incident will be given. Conclusions Particular measures of redevelopment of soil for fuel oil release after flood incidents are not necessary normally. Even at the redevelopment after transport damages or at devastated sites with essential higher oil contaminations of soil in comparison to fuel oil release after flood incidents high decomposition rates are obtained by normal soil improving measures supporting the natural micro-organisms in reducing the hydrocarbon concentration for 70–90?% after a few months. Perspectives With the described results a realistic valuation of the environmental harm of fuel oil release after flood incidents could be given. From this qualified measures can be derived for official decisions and precautionary and reliable activities at fuel oil installations of flood endangered areas.  相似文献   

2.
A procedure has been developed for the analysis of metsulfuron‐methyl in the soil of field crops. The soil extracts are cleaned by repeated TLC, and metsulfuron‐methyl is simultaneously separated from its soil metabolites. Metsulfuron‐methyl is transformed by diazomethane into its N,N ‘‐dimethyl derivative which in the GC (electron capture detection) and GC‐MS apparatus is transformed into a benzisothiazole compound which is measured with great sensitivity. The sensitivity limit is 0.3 μg metsulfuron‐methyl kg‐1 dry soil. The results of the chemical analyses are confirmed by bioassays using sugar beet as test plant. Metsulfuron‐methyl was measured in the soil of two winter wheat crops after post‐emergence application in the spring of 6 g metsulfuron‐methyl ha‐1. In the 0–8 cm surface soil layer, the metsulfuron‐methyl soil half‐life was 78 days in 1997, and 67 days in 1998. During crop, metsulfuron‐methyl remained in the 0–8 cm surface soil layer. There, it was at a maximum concentration and herbicide efficiency in a 2 cm‐thick soil layer. This maximum concentration soil layer progressively moved down during crop, attaining the 4–6 cm surface soil layer at crop end. After the winter wheat harvest at the end of July, and the rotary‐tilling of the 0–10 cm surface soil layer before sowing of the green manures, 27% of the metsulfuron‐methyl initial dose still remained in the 0–10 cm surface soil layer. This residue progressively disappeared, and was no more detected at the middle of November. It had no, or only very low inhibiting effect on the growth of the green manures. Thus there is no concern about the possible phytotoxicity of persistent metsulfuron‐methyl soil residues towards the following crops, when metsulfuron‐methyl is applied at the rate of 6 g a.i.ha‐1.  相似文献   

3.
ABSTRACT

Soil properties have an important influence on soil fauna in the grassland ecosystem. However, the relationship between the structural characteristics of soil fauna and properties in the grassland ecosystem in freeze–thaw season remains unclear. Hence, the feature of soil arthropods and properties in Songnen Grassland of China were investigated in fall–winter alternating (T1), completely frozen (T2) and winter–spring alternating periods (T3) during freeze–thaw season in three years. Results showed slight differences in the community composition of soil animals with Oribatida, Prostigmata and Mesostigmata as co-dominant groups in all sampling periods. The total number of individuals of soil arthropod at low temperature was low. The pH value, electrical conductivity (EC), and moisture content had the same order of T3?>?T2?>?T1. The activities of invertase and urease increased with increasing soil temperature, whereas protease activity had no relationship with soil temperature, soil moisture, EC and soil organic matter (SOM), activities of protease and urease were principal factors affecting individual abundance of soil animals. The sequence of their effect degrees was moisture content > EC > SOM > protease activity > urease activity. The changes in the quantitative characteristics of soil animals were related to soil properties. Therefore, soil properties can affect the structural characteristics of soil arthropod in the Songnen Grassland of China in the freeze–thaw season.  相似文献   

4.
With increasing petroleum related activity in the Barents Sea and the subsequent risk of accidents, there is a demand for knowledge about the effect of oil pollution in Arctic ecosystems. In the present study, the sea ice amphipod Gammarus wilkitzkii was exposed to a water soluble fraction (WSF) of oil in two experiments, using a rock column system. First, three groups of adult females were exposed for 36 days for control (n=9), low dose (n=10) (initial and final oil concentration: 14, 115 and 120 μ g/l) and high dose (n=10) (initial and final oil concentration: 78, 764 and 395 μ g/l). Total oxyradical scavenging capacity (TOSC), malondialdehyde (MDA), catalase activity (CAT), respiration rate and mortality were measured. In the second experiment, moulting rate was measured in immature individuals of two groups, control (n=10) and exposed (n = 20), over 113 days. No mortality was observed in either of the experiments. There was a dose-related significant increase in respiration rate (40.69 (±22.82), 55.63 (±20.98), 94.57 (±22.80)) mg O2 h?1g ww?1 in control, low dose and high dose, respectively. A higher MDA level was detected in the low dose group (25.04 (±6.00) nmol g?1 of tissue) compared to both control (20.44 (±2.62) nmol g?1 of tissue) and high dose groups (20.93 (±4.79) nmol g?1 of tissue). Likewise, the low dose group had the highest value of TOSC towards hydroxyl (727.74 (±475.58), 1157.58 (±278.62), 1067.30 (±369.22) TOSC unit value mg?1 of protein for control, low and high dose, respectively). Although no difference in the catalase activity between control and exposed groups was detected, higher activity was measured at 0 °C (average: 248 μ mol?1 min?1 mg?1 of protein) than at the standard temperature for catalase measurement of 25 °C (average: 140 μ mol?1 min?1 mg?1 of protein), indicating a need to optimise the standard operational procedure when working with Arctic organisms. No effect of WSF exposure on moulting rate was detected. In conclusion, little mortality was observed during the experiments, indicating some degree of tolerance levels. However, the biomarker results indicated sub-lethal effects in G. wilkitzkii after exposure to WSF.  相似文献   

5.
Zinc is an essential trace element to maintain human and generally mammal homeostasis; its biological signification could be explained through the participation or as structural element of more than 200 protein molecules in mammals.

The synthesis of proteins in spleen and thymus of rats is induced by zinc, a fact which moved us to purify and isolate such proteins, before proceeding to its identification or characterization. Rats are treated with zinc during 4 weeks and then sacrificed; blood is extracted under light ether anesthesia. The extracts of thymus and spleen were prepared by homogenization with Tris‐HC1 buffer 1.0 × 10‐2M pH 7.4 and submitted to Sephadex G‐75 column (40 × 1.6 cm) after centrifugation and filtration through 0.45 μ filters. The elution profile of proteins were established at 253 and 280 nm, and zinc concentration was measured by atomic absorption spectrophotometry. The peak containing zinc was submitted to a second column of Sephadex G‐25 (40×1.6 cm) obtaining a peak of purified protein with physico‐chemical characteristics similar to metallothionein.  相似文献   

6.
以自然资源"水冬瓜果油"为包膜材料,利用盆栽试验,共设5个处理,研究在有菊花吸收养分的情况下,水冬瓜(Idesia polycarpa maxim.var.vestita dies)油包膜材料在土壤中的降解性能及对土壤酶活性的影响。结果表明:水冬瓜油包膜材料随土壤含水量的增加,降解速率加快。种植菊花的土壤过氧化氢酶、蔗糖酶、脲酶活性也呈现先上升、后下降的趋势。在土壤含水量为30%时,包膜材料半衰期只有62 d;在处理3(果油85%+调理剂15%)中,土壤过氧化氢酶、土壤蔗糖酶和脲酶数量增加最多。因此,水冬瓜果油85%+调理剂15%和土壤含水量30%,有利于土壤酶活性的提高,从而加快包膜材料的降解速度。  相似文献   

7.
保护性耕作对土壤有机碳、氮储量的影响   总被引:6,自引:0,他引:6  
以辽宁彰武县保护性耕作示范推广基地土壤为研究对象,通过实地调查和取样分析,对比研究了传统犁耕和6年免耕秸秆覆盖条件下的土壤有机碳、氮储量,为广泛评价保护性耕作的土壤碳、氮截获功能和合理选择农业耕作方式提供科学依据。研究结果表明,与犁耕相比,免耕覆盖不同程度地提高了0~5cm和5~15cm土层的有机碳、氮储量,对15cm以下土层没有影响,从而增加了0~100cm土体总的有机碳、氮储量,证明了免耕覆盖的土壤碳、氮截获功能,年均截获率分别为1.37Mg·hm-2和0.84Mg·hm-2。有机碳、氮在犁耕土壤0~30cm剖面的垂直分布较为均匀,免耕覆盖后则发生明显的分层,产生表聚现象。  相似文献   

8.
The effects of environmental factors on bioactivity, adsorption and persistence of pretilachlor were studied in the laboratory and greenhouse using cucumber (Cucumis sativus L.) as the bioassay species. The three soils studied viz. Bernam, Selangor and Sabrang series were chosen for their different characteristics. The half‐life of pretilachlor decreased from 10.24 to 4.90 days as temperature increased from 25°C to 35°C in the Selangor Series soil and from 10.86 to 7.63 days in the Bernam Series soil at 60% field capacity. At the same moisture level, an increase of temperature from 25°C to 35°C also reduced the half‐life of pretilachlor in Sabrang soil from 8.87 to 2.59 days. The half‐life of pretilachlor also decreased with increasing moisture levels in Selangor and Sabrang series but not in Bernam series soils. The greatest adsorption of pretilachlor was observed in Bernam series, followed by Selangor and Sabrang series. No phytotoxic residue of pretilachlor was detected in the supernatant after 10 h incubation. Since the residue was strongly adsorbed in Bernam series, its biological activity was less than in the other soils studied.  相似文献   

9.
Abstract

In this study, The essential oil of flowers, fruits, and leaves of Thevetia peruviana, which were collected in Vietnam, were being reported for the first time. The essential oil of flowers was extracted by different methods: n-hexane extraction, distillation water, and supercritical CO2 extraction. The compositions of essential oil of different parts of Thevetia peruviana were analyzed by GC-FID and GC/MS systems. Major chemical compositions of essential oil were identified as monoterpenes, sesquiterpenes, terpenoids, and sterol. The activities of total essential oil extracts of the Thevetia peruviana exhibit inhibitory activities against five cancer cell lines.  相似文献   

10.
Arsenic compounds, and especially organo‐arsenic derivatives, are highly toxic and many have been manufactured as chemical warfare agents. This study was designed to provide background information relevant to the potential application of aquathermolysis techniques for the detoxification of such potent military warfare agents. Six arsenic‐containing compounds with structural features which mimic known agents were studied in neutral superheated water: 4‐aminophenylarsine oxide, 4‐arsanilic acid, 4‐nitrophenylarsonic acid, 5, 10‐dihydro‐10‐ethylphenarsazine, tetraphenylarsonium chloride hydrate, and (3‐cyanopropyl)dimethyl(2‐phenethyl)arsonium bromide. Most of these compounds were moderately susceptible to hydrolysis for 1h at 300°C. o‐ and p‐Aminosubsituted arsenic compounds were more reactive than compounds with an electron‐withdrawing group substituent. Aromatic C—As bonds were more resistant to cleavage than aliphatic C—As bonds.  相似文献   

11.
The distribution of the sand crab Ocypode cursor (L.), as indicated by the number of burrows, was studied for 2 years in a 50×50 m sand beach area in northern Israel. A definite relationship was established between the distribution pattern from the seashore inwards towards the sand dunes, and the degree of sand moisture as it changed seasonally. During autumn, more crabs were found at a distance of 15 to 25 m from the sea where sand moisture was about 14%. At the beginning of winter crabs dispersed evely, disappearing with advancing winter. Crabs reappeared in spring, although in smaller numbers, dispersing in a pattern similar to that in autumn. At the beginning of summer and later on, more crabs appeared and concentrated closer to the sea (5 to 10 m). The population structure was analysed directly by measuring the crab's dimensions, and indirectly by counting burrows and measuring the diameter of their openings. Direct analysis revealed two distinct sizeage groups: smaller crabs 0.5 to 3 cm long, and larger ones over 4 cm long. The smaller burrows were inhabited by the first group and were mostly found closer to the sea; the second group was found more landwards. Three main types of burrow shapes are described.  相似文献   

12.
The composition and distribution of n-alkanes carbon numbers reflect the source of kerogenic organic matter, sedimentary environment, and maturity of the rocks. The comparison results of the n-alkanes GC (gas chromatography) chromatograms in the Tazhong Low Uplift show that the n-alkanes of the source rocks in Upper Ordovician display an odd carbon number predominance. At the same time, Cambrian–Lower Ordovician exhibit an even carbon number predominance. The correlation between oil and source rock illustrates that crude oils in the fields of well TZ10-12 and well TZ24 stem from the Upper Ordovician source rocks. The origins of the crude oils in the fields of well TZ161-162 and well TZ45 are Cambrian–Lower Ordovician. The strata corresponding to the crude oils with odd/even carbon number predominance match the oil–source rock correlation. Thus, the characteristics of odd/even carbon number predominance in n-alkane compounds are effective for oil–source rock correlation in the Tazhong Low Uplift, Tarim Basin.  相似文献   

13.
Paddy (rice) plants were dusted with 10% HCH containing 14C‐Γ‐HCH, at the rate of 2.5 kg a.i./ha and 14C‐residues were determined in different fractions of rice. Rice bran (0.187 ppm) had more of 14C‐residues than grain (0.026 ppm) and husk (0.042 ppm). The rice bran oil contained 0.129 ppm HCH residues. While degumming, dewaxing, alkali refining and bleaching had no effect, deodorisation alone eliminated 99.5% of added 14C‐residues in rice bran the oil during refining process.  相似文献   

14.
O3浓度升高对麦田土壤碳、氮含量和酶活性的影响   总被引:1,自引:0,他引:1  
近地层O3作为全球最重要的大气污染物之一,其对作物的生长发育、土壤酶活性、土壤碳、氮的影响机制已成为人们关注的重要问题。采用开顶式气室(OTCs)法模拟研究O3浓度升高对冬小麦土壤碳、氮含量和酶活性的影响。结果表明,O3浓度升高导致麦田0~10 cm和10~20 cm土层的全碳(TC)和全氮(TN)含量呈现出下降的趋势。O3浓度升高对土壤酶活性也有影响。在冬小麦灌浆期,O3胁迫可促进土壤脱氢酶活性提高。当O3浓度为120 nL·L-1时,0~10 cm、10~20 cm和20~40 cm土层的脱氢酶活性分别比对照处理提高59.4%、51.5%和22.2%。O3胁迫对土壤转化酶活性的影响随着冬小麦生长期和土壤采样深度的不同而发生变化。在冬小麦拔节期,O3处理对不同土层脲酶活性的影响没有达到显著差异水平,但是在灌浆期,20~40 cm土层的脲酶活性随着O3浓度的增加而提高,在120 nL·L-1浓度O3处理下脲酶活性比对照处理提高24.6%。在O3胁迫条件下土壤转化酶活性与土壤全碳含量、土壤脲酶活性与土壤全氮含量均呈现出显著的正相关关系。  相似文献   

15.
This study was designed to evaluate the adsorption‐desorption hysteresis of endosulfan (1,2,3,4, 7,7‐hexachlorobicyclo[2,2,1]‐2‐heptene‐5,6‐bisoxymethylene sulfite) in selected tropical soils. Two major tropical soils from Thailand were selected, Rangsit lowland soils (Rangsit series) and Phrabat upland soils (Pakchong series). The soil types were sub‐divided into plow soils, 0–20cm depth from the surface, and subsoils, 20–40cm depth. Adsorption was determined in 24h batch equilibrium, with five different concentrations of 14C endosulfan ranging from 1.04 to 16.64 ng/mg soils. Four successive desorption studies were performed continuously after three adsorption concentrations, 24h for each successive. Adsorption coefficient values (K ads) as determined by Freundlich model ranged from 0.02 to 0.14 and found to be higher in Rangsit soils as expected when compared with Phrabat soils. Desorption was hysteresis in every desorption study. Desorption coefficient values (K des) were higher than adsorption (K des).  相似文献   

16.
塔里木河下游地区新生林地滴灌后土壤水盐再分布特征   总被引:1,自引:0,他引:1  
以塔里木河下游农二师35团8连绿洲-荒漠交界处滴灌条件下的新生林土壤为研究对象,对滴灌结束24 h后的土壤水分、盐分分布特征进行了分析.结果显示:水平方向上,各点处纵剖面土壤含水率随着距滴头距离的增加逐渐下降,至距滴头75 cm处达最低值;而各点处土壤纵剖面含盐量则随着距滴头距离的增加逐渐上升,至距滴头75 cm处达到峰值.垂直方向上,无论水分还是盐分,在20-40 cm土层含量较高,至中下层趋于下降.水平方向上,随着距滴头距离的增加,滴头处土壤剖面含水率与其他点处土壤剖面含水率的相关性依次递减,距滴头75 cm处土壤剖面含盐量与其他点处土壤剖面含盐量的相关性依次递增;垂直方向上,与20-40 cm土层含水率相关性较强的是0-20 cm土层,在α=0.01水平上呈显著相关,其次是40-60 cm土层,在α=0.05水平上呈显著相关.  相似文献   

17.
青藏高原东缘不同林龄云杉林冬季土壤呼吸特征   总被引:3,自引:0,他引:3  
采用动态密闭气室红外CO_2 分析法(IRGA),连续定位测定青藏高原东部4种不同恢复阶段的人工云杉林和原始云杉林在冬季(2007.11.01~2008.03.31)的土壤呼吸.用挖壕沟法同步区分土壤自养呼吸和异养呼吸,并同步测定土壤5 cm温度和水分结果表明,土壤5 cm温度与冬季土壤呼吸速率具有显著的正指数相关关系,土壤含水量与冬季土壤呼吸的相关性不明显.亚高山针叶林冬季土壤呼吸温度系数Q_(10) 值为3.180 3~6.546 9,不同年龄阶段针叶林的Q_(10)值大小依次为:35 a人工云杉林>47 a人工云杉林>65 a人工云杉林>22 a人工云杉林>原始云杉林.22 a、35 a、47 a、65 aA工云杉林和原始云杉林冬季土壤总呼吸碳释放通量别为200.16、196.23、166.71、228.47、261.75 g(C)m~2,随着森林恢复更新,冬季土壤呼吸通量呈现出先下降后升高的趋势,这种变化趋势的拐点出现在47 a人工林附近.温度是影响土壤自养呼吸贡献率和异养呼吸贡献率的主要因子,温度与异养呼吸贡献率成负相关.22 a、35 a、47 a、65a人工云杉林和原始云杉林冬季土壤的自养呼吸和异养呼吸碳释放通量平均值分别为133.44、134.04、115.97、166.05、199.07 g(C)m~(-2)和66.71、62.20、50.73、62.43、62.68 g(C)m~(-2).图7表3参34  相似文献   

18.
On four winter wheat fields grown on soils of different textures in Belgium, 10?g a.i.?ha?1 of the sulfonylurea herbicide iodosulfuron-methyl-sodium was applied post-emergence in the spring. A procedure was developed for the analysis in field soils of iodosulfuron-methyl 1 and of its metabolites iodosulfonamide 2 and iodosaccharin 3 with a sensitivity limit of 0.3?µg of equivalents of iodosulfuron-methyl 1 kg?1 dry soil. GC and GC-MS was used after purification of the soil extracts by repeated TLC, and methylation. The results of the chemical analyses were confirmed by means of bioassays using sugar beet as test plants. On a winter wheat crop grown on sandy loam soil of pH 6.2 at Melle, iodosulfuron-methyl-sodium 1 was applied at the beginning of April. The iodosulfuron-methyl 1 soil half-life in the 0–10?cm surface soil layer was 60 days. At the end of June, the sum of the concentrations of the metabolites 2 and 3 in the 0–10?cm surface soil layer attained a maximum corresponding to 27% of the applied dose. Green manures were sown after the harvest of the wheat at the end of August. No phytotoxicity at all was observed during the growth of the green manures, in spite of the very low residues of iodosulfuron-methyl 1 remaining in soil in September and October. At the mid of November, iodosulfuron-methyl 1 and its metabolites 2 and 3 were no more detected in soil. On three other winter wheat crops grown on clay soils of pH of about 8 at Leke, Gistel and Zevekote, iodosulfuron-methyl-sodium 1 was applied at the beginning of May. The soil half-life of iodosulfuron-methyl 1 in the 0–10?cm surface soil layer was between 30 and 44 days. Since the application and until the mid of November, in all the trials made on sandy loam or clay soils, iodosulfuron-methyl 1 (and its metabolites 2 and 3 in the trial made on sandy loam soil) were never detected in the 10–15 and 15–20?cm surface soil layers, indicating their low mobilities in the field soils.  相似文献   

19.
《毒物与环境化学》2013,95(3-4):99-111

The new herbicide propoxycarbazone (sodium methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-triazole-1-yl)carbonyl]amino]sulfonyl]benzoate, 1 ) has been measured in the soil of winter wheat crops. In the soil extract, propoxycarbazone was separated from its potential soil metabolites by repeated TLC. Propoxycarbazone was methylated with diazomethane. In the GC and GC-MS apparatus, the N -methylpropoxycarbazone 2 (methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-triazole-1-yl)carbonyl]methylamino]sulfonyl]benzoate) generated N -methylsaccharin 4 (1-dioxy-2- N -methyl-3-keto-1,2-benzisothiazol) which was measured. Propoxycarbazone has been applied in the spring at the rate of 70 g ha m 1 post-emergence on winter wheat crops grown in several sites different as to their soil texture and composition. In the 0-10 cm surface soil layer of the winter wheat crops grown on sandy loam (Melle) or on clay loam (Zevekote) soils, the half-life of propoxycarbazone was 54 days. In the winter wheat crop grown on loam soil (Cortil-Noirmont), the propoxycarbazone soil half-life was 31 days. The difference between the propoxycarbazone soil half-lives at the different sites was related to the organic fertilizer treatments applied in the past. After the winter wheat harvest at the end of August, the concentration of propoxycarbazone in soil was very low at Cortil-Noirmont; at the end of September, propoxycarbazone was no more detected. At Melle and Zevekote, the concentration of propoxycarbazone in soil was very low in September, and disappeared completely at the end of October. Since the treatment and until the end of October, propoxycarbazone was not detected in the 10-15 and 15-20 cm surface soil layers of the three trials.  相似文献   

20.
The movement of copper, chromium and arsenic originating from samples of the wood preservative Tanalith® through mildly acidic, sandy loam soil was investigated. Small, undisturbed soil cores (of dimensions 15 × 15 × 15 cm) were removed from the topsoil of a paddock adjacent to the Glenelg River in the Western District of Victoria, Australia. The paddock soils were thin (<30cm) greyish brown, mildly acidic, sandy loams with a moderate organic carbon content (2–5%) overlying a limestone cap. Tanalith® was applied to the surface of the cores which were then irrigated with deionised water at approximately 30 mm day‐1. Copper concentrations in all leachate remained at background levels throughout the experiment, and this element was found to be immobilised in the top 4 cm of the soil. Up to 29% of the applied dose of chromium was detected in the leachate, with breakthrough occurring within 20 days of Tanalith® application. Up to 13% ofthe applied dose ofarsenic was detected in the leachate, although in this case breakthrough was not observed until 25 days after Tanalith® application and leachate concentrations were still rising when the experiment came to a close. Significant concentrations of arsenic and chromium were found in the top 6 cm of the soil profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号