首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanosized ZnO rods were synthesized using a microwave-assisted aqueous method. High molecular weight polyvinyl alcohol was used as a stabilizing agent. Size, surface morphology, and structure were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). SEM and TEM images show that ZnO nanorods have diameters of about 50?nm and lengths of a few micrometers. The XRD pattern reveals that ZnO nanorods are of hexagonal wurtzite structure. The average crystallite size calculated from Scherrer's relation was found to be 40?nm. The effects of catalyst loading, pH value, and initial concentration of methyl orange on the photocatalytic degradation efficiency using ZnO nanorods as photocatalyst were discussed. The results revealed that ZnO nanorods with a diameter of 50?nm showed the highest photocatalytic activity at a surface density of 0.2?g?dm?3.  相似文献   

2.
以沉淀法制备了高活性ZnO纳米丛(nanobushes,ZNB),以水热反应制备得到普通ZnO纳米颗粒(nanoparticles,ZNP).利用X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)、比表面积测定仪(BET)和光致发光光谱(PL)等手段对ZNB和ZNP进行了表征,并比较了其光催化活性的差异.在紫外光(λ≤387 nm)照射40 min后ZNB使有机染料罗丹明B(Rhodamine B,RhB)完全褪色,而相同条件下ZNP仅能使RhB褪色53%.通过总有机碳(TOC)的测定,研究了ZnO对RhB深度氧化矿化程度,光照6 h后ZNB对RhB矿化率高达92%,而ZNP对RhB的矿化率只有77%.跟踪测定了光催化降解过程中活性氧化物种相对含量的变化,表明紫外光激发条件下,ZnO光催化反应机理主要涉及羟基自由基(.OH)历程,且ZNB产生活性氧化物种的量高于ZNP.  相似文献   

3.
ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composition and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30min and after 60min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.  相似文献   

4.
ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composition and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.  相似文献   

5.
Photocatalytic degradation of chemical pollutants in water was investigated using semiconductor oxide catalysts, zinc oxide (ZnO) and titanium dioxide (TiO2) and phenol as the substrate. Influence of various parameters such as characteristics of the catalyst, irradiation time, substrate and catalyst concentrations, pH etc. has been studied and optimum conditions for the complete degradation of phenol in water have been identified. In terms of activity and durability TiO2 is far superior to ZnO. Mixing ZnO with TiO2 does not affect its activity significantly. The process is especially relevant in view of its potential for the treatment of wastewater containing pollutants, using solar radiation as the energy source.  相似文献   

6.
TiO2,ZnO光催化降解庚烷的活性研究   总被引:11,自引:4,他引:11  
采用XRD,SPS,XPS,BET技术对TiO2和ZnO超细粉进行了结构、性能测试、考察了不同粒径的超细粉和普通商品(体相)TiO2、ZnO对庚烷的气相光催化反应,结果表明,TiO2(锐钛矿型)光催化活性大于ZnO,锐钛矿型TiO2光催化活性较金红石型TiO2好,对于同一结构的粒子来说,粒径愈小,表面羟基含量愈高,光催化活性愈高,通过反应产物的分析,探讨了反应机理。  相似文献   

7.
The frequent detection of antibiotics such as ciprofloxacin in surface and drinking waters around the world has attracted concern from various researchers. Such presence is an indication that the decontamination of water polluted by antibiotics is beyond the conventional treatment methods. However, among the different treatment methods that have been developed in the area of water purification, heterogeneous photocatalysis using semiconductor as a mediator has been rated as an efficient and a green wastewater treatment method. This is because, the process is effective in degrading and mineralizing organic pollutants, using UV or visible light. The present review paper covers a brief survey over a range of publications in the last decade, involving photocatalytic materials that have been employed in the purification of water contaminated by ciprofloxacin.  相似文献   

8.
The photocatalytic bleaching of some dyes (erythrosin-B, fast green FCF and eosin Y) was carried in the presence of semiconducting zinc oxide and was observed spectrophotometrically. The effects of various operating variables like pH, concentration of dyes, amount of semiconductor and light intensity on the efficiency of the reaction were also observed. Attempts have been made to study the effect of the addition of other metal ions (Fe2+, Ni2+, Ag+, Cu2+, Co2+, V2+ and Mn2+). All the added metal ions increase the reaction rate to some extent. It was also observed that Fe2+ is most effective in photobleaching of erythrosin-B, whereas V2+ is more effective in the cases of fast green FCF and eosin Y. A tentative mechanism has been proposed.  相似文献   

9.
This study focuses on the degradation of the sulfonamide antibiotics, sulfadiazine, sulfamethazine, sulfamethoxazole, and sulfathiazole, using ultraviolet irradiation in various conditions. Different pHs were investigated in combination with the addition of hydrogen peroxide and further oxygen removal. High-performance liquid chromatography electrospray ionization ion-trap mass spectrometry was used to identify and elucidate degradation products and to establish concentration–time curves. Previously unknown degradation products could be characterized. Reaction rate constants of all compounds and transformation products were determined. The parent sulfonamides decayed according to first-order kinetics, while the concentrations of the transformation products varied with time according to a subsequent reaction of an intermediate product. Quantum efficiencies were analyzed for mechanistic purposes. As example, sulfamethoxazole was added to effluents from a wastewater treatment plant and irradiated. Phototoxicity and environmental hazard were assessed through quantitative structure-activity relationship computations. In addition, the minimal inhibition concentrations were determined for Pseudomonas fluorescens and Bacillus subtilis. Conclusions for UV-C irradiation as a fourth purification wastewater treatment stage were derived.  相似文献   

10.
A layer of zinc oxide (ZnO) micro-grid was deposited on the surface of ZnO film using the DC reactive magnetron sputtering method and the micro-sphere lithography technique on glass substrates. Samples of this layer were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and ultraviolet-visible light spectroscopy. X-ray diffraction showed the high crystallinity of ZnO film and the regular arrangement of the micro-grid. The microgrid ZnO has a lower specular reflection and a higher diffuse reflection, allowing incident light to reflect two or three times to enhance the usage of light. Photocatalytic degradation experiments on methylene blue using both ZnO micro-grid and ordinary film showed that the ZnO micro-grid has better photo-catalytic properties than ordinary film. The ZnO micro-grid enhanced the photocatalytic efficiency of ZnO film by 28% with a degradation time of 300 min.  相似文献   

11.
Titanium dioxide photocatalysis, using 200 mgl−1 of TiO2, and photo-Fenton, using 20 mg l−1 of iron, were applied to the treatment of dimethoate dissolved in water at 50 mg l−1. A heterogeneous photocatalysis test was performed in a 35-l solar pilot plant with Compound Parabolic Collectors (CPCs) under natural illumination. A homogeneous photocatalysis test was performed in a different solar pilot plant with four CPC units and a total volume of 75 l. In this work total disappearance of dimethoate and 90% of mineralization were attained in both solar treatments. Treatment time, hydrogen peroxide consumption and ferric phosphate precipitation during photo-Fenton treatment were discussed. An erratum to this article can be found at  相似文献   

12.
秦好丽  毕珊 《生态环境》2012,(7):1329-1333
为改善二氧化钛的可见光催化活性,以蛋氨酸为硫源,在温和条件下采用溶胶-凝胶法制备了硫掺杂二氧化钛粉末。采用XRD、TEM、UV-Vis漫反射吸收光谱和XPS等方法对制备的样品进行表征,以甲基橙的光降解效果考察其可见光催化活性。结果显示:350~500℃所制备的硫掺杂二氧化钛均为锐钛矿相,600℃出现混晶,且硫的掺杂一定程度的抑制了粒径的增长和晶相的转变;硫以阳离子形式进入二氧化钛晶格中,引起光催化剂在可见光区的光吸收;掺杂样品表现出较好的可见光催化活性,且随煅烧温度的增加,催化活性逐渐降低。正交试验得出优化条件为:S/Ti物质的量配比为1.6%,煅烧温度为450℃,煅烧时间为3 h。  相似文献   

13.
以水热法合成的PbMoO4微晶体为催化剂,考察了反应溶液pH、污染物初始浓度和催化剂用量对光催化降解灭幼脲的影响,研究了光催化降解过程的反应动力学和作用机理.结果表明,最佳反应溶液pH 6.0、污染物初始浓度20 mg.L-1、催化剂用量0.4 g.L-1.反应4 h灭幼脲降解率达99.96%,矿化率达66.4%,降解反应符合一级动力学.通过加入自由基清除剂对比实验发现,PbMoO4微晶体主要通过空穴和.OH的氧化作用使灭幼脲降解,其中空穴起主要作用.  相似文献   

14.
氧化锌纳米颗粒(ZnO NPs)是目前应用最为广泛的纳米材料之一,已有研究表明其对生物体具有显著的毒性效应。为了研究ZnO NPs的毒性与种子发育阶段的关系,选择小麦(Triticum aestivum L)作为受试植物,将处于不同发育阶段的小麦种子置入ZnO NPs悬浮液中进行培养,研究了ZnO NPs对水培小麦种子不同发育阶段的影响。结果表明,虽然ZnO NPs对处于吸胀阶段、萌动阶段和发芽阶段的小麦都可以产生毒性,但是毒性的大小随小麦发育阶段的不同而表现出明显的差异(P0.05)。在60 mg·L-1暴露浓度下,用ZnO NPs对处于吸胀阶段、萌动阶段和发芽阶段的小麦种子进行处理,小麦根长的抑制率分别为37.8%、80.2%和95.7%;就萌动阶段和发芽阶段而言,ZnO NPs的毒性与其浓度有关,浓度越大毒性越大,即具有显著的浓度效应。上述研究结果对于全面准确地评价ZnO NPs毒性具有重要的意义。  相似文献   

15.
研究了纳米TiO2光催化剂对活性黄X6G、活性红X3B、活性蓝XBR、碱性绿、碱性紫5BN、碱性品红等6种染料溶液的光解脱色效果。结果表明,在pH2的酸性溶液中,对浓度为60mg/L的6种染料溶液的脱色率均超过93.3%;即使对浓度达200mg/L的活性蓝溶液,其脱色率仍可达78.8%。染料溶液的pH值对纳米TiO2光催化脱色效果影响较大  相似文献   

16.
采用溶胶-凝胶法制备了ZnO薄膜,并通过光电流响应、EIS、SEM、XRD等分析方法对其光电化学性能、表面形貌和结构进行表征.以制备的ZnO薄膜为工作电极对乙酰甲胺磷进行光电催化降解.实验表明,ZnO薄膜电极在UV照射下能够有效地光电催化降解乙酰甲胺磷,加入适量H2O2后具有一定的协同作用.在H2O2浓度为9.908 mmol.L-1,外加电压为1.2 V,支持电解液Na2SO4浓度为0.01 mol.L-1,溶液pH值为5.4的条件下,对0.1 mmol.L-1的乙酰甲胺磷180 min的降解率可达到89.6%.  相似文献   

17.
ZnS-loaded TiO2 (ZnS–TiO2) was synthesized by a sol–gel method. The catalyst was characterized by using different techniques (XRD, HR-SEM, EDS, DRS, PL, XPS, and BET methods). The photocatalytic activity of ZnS–TiO2 was investigated for the degradation of Sunset Yellow FCF (SY) dye in an aqueous solution using ultraviolet light. ZnS–TiO2 is found to be more efficient than prepared TiO2, TiO2–P25, TiO2 (Merck), and ZnS at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration, and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by chemical oxygen demand measurements. The catalyst is found to be reusable.  相似文献   

18.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

19.
以多孔陶瓷球为载体,采用溶胶-凝胶法在其表面进行纳米TiO2薄膜负载,制备了多孔陶瓷球负载纳米晶粒二氧化钛光催化剂,经X射线衍射法(XRD)等手段对其表征结果表明,复合载体经500℃焙烧后,TiO2以锐钛矿晶型存在。对催化剂降解活性艳蓝溶液的催化活性进行研究表明,催化剂在5 h内可完全降解活性艳蓝染料。  相似文献   

20.
Due to the low water solubility of polybrominated diphenyl ethers, organic solvent is usually added into the oxidation system to enhance the removal efficiency. In this study the photocatalytic degradation of decabromodiphenyl ether (BDE209), a type of polybrominated diphenyl ether used throughout the world, in pure water without the addition of organic solvent was investigated. In the pure water system, BDE209 was not dissolved but dispersed as nano-scale particles with a mean diameter of 166 nm. Most of BDE209 (>98%) were removed within 4 h and the final debromination ratio was greater than 80%. Although the addition of organic solvent (tetrahydrofuran, THF) could lead to a relatively high BDE209 degradation rate, the final debromination ratio (<50%) was much lower than that in pure water system. Major oxidation intermediates of tetrahydrofuran, including tetrahydro-2-furanol and γ-butyrolactone, were detected indicating the engagement of THF in the BDE209 degradation process. The photocatalytic degradation of BDE209 in the pure water system followed first-order kinetics. The BDE209 degradation rate constant increased from 0.0011 to 0.0023 min−1 as the pH increased from 3 to 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号