首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total = 10-100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities νi and equilibrium constants Ki for metal binding at specific biomass sites i = A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that νi is a stoichiometric parameter that is independent of the magnitude of Ki for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   

2.
The reductive adsorption of hexavalent chromium (Cr6+) using six indigenous microorganisms isolated from contaminated soil and water samples was investigated. Quantification of Cr6+ reduction was determined using the 1,5-diphenylcarbazide method followed measuring the absorbance at OD540. Bacterial isolates identified as Klebsiella pneumoniae, Bacillus firmus and Mycobacterium sp. were capable of absorbing Cr6+ efficiently into their biomass, whereas the fungal isolates, Aspergillus flavus, Aspergillus sp. and A. niger were capable of transforming Cr6+ to Cr3+ relative to cell-wall-binding properties. Infrared spectral analysis of functional groups showed that ?OH, ?NH2 and C?O with conjugated ?NH were the binding groups responsible for adsorption of Cr6+ within the biomass of isolates. The data highlight the promising biotechnological application of these isolates in removing carcinogenic and mutagenic Cr6+ from contaminated ecosystems.  相似文献   

3.
In this research, we evaluated the toxic effect of metal ions on mycelial growth and phosphate-solubilising activity of soil-borne micromycetes isolated from the Phragmites australis rhizosphere using Pikovskaya-agar plates supplemented with four metal concentrations. The diameter growth rate (DGR) decreased as the metal concentration rise for all tested fungi. Trichoderma atroviride had the fastest growth rate (1.48?cm2?day?1) and was the least susceptible to Al3+, Cd2+, Cr3+, Cu2+ and Pb2+ with a median effective concentration (MEC50) of 12.19, 0.48, 4.51, 11.44 and 50.05?mM, respectively. Aspergillus japonicus was the most tolerant to Co2+, Ni2+ and Zn2+, with MEC50 values of 3.36, 1.095 and 2.34?mM, respectively. Penicillium italicum was the most tolerant to Cr6+ (MEC50?=?0.677?mM). The ability to solubilise phosphate remained, despite the decrease in the DGR, and P. italicum and Penicillium dipodomyicola had the highest Phosphate Solubilisation Indexes (PSIs) at 1.97 and 2.12, respectively. In particular, P. italicum recorded the highest PSI of all the studied isolates at 0.62?mM Cr3+ (PSI?=?4.74). A. japonicus and T. atroviride were the most tolerant isolates to all tested metals, which suggests that these isolates are promising candidates for further study with regard to mycoremediation and biofertilisation of metal-polluted soils.  相似文献   

4.
Gram negative bacteria classified as Alcaligenes eutrophus and carrying large resistance plasmids (generally two) were found in various industrial sites highly contaminated by heavy metals (Zn++, Cu++, Co++,...). These strains were detected by DNA hybridization with a probe made with a 9kb fragment (ccz+ fragment) encoding for resistances to Cd++, Co++ and Zn++, and cloned from plasmid pMOL30. This plasmid was isolated from the representative strain A. eutrophus CH34 which harbours the plasmids pMOL30 (240 kb) and pMOL28 (165 kb). Phenotypes related to pMOL28 and pMOL30 include the tolerance to Cd++, Co++, Cr04 =, Cu++, Hg++, Ni++, Pb++ and Zn++. The described genetic properties of these plasmids refer to some cloned or mapped functions and to some plasmid rearrangements. Plasmid pMOL85 (250 kb) which is related to pMOL30 was also described. Its host (A. eutrophus DS185) was isolated from a zinc desert. pMOL85 can efficiently self transfer in plasmidfree derivatives.  相似文献   

5.
The biosorption of Cd2+ and Cu2+ onto the immobilized Saccharomyces cerevisiae (S. cerevisiae) was investigated in this study. Adsorption kinetics, isotherms and the effect of pH were studied. The results indicated that the biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae was fast at initial stage and then became slow. The maximum biosorption of heavy metal ions on immobilized S. cerevisiae were observed at pH 4 for Cd2+ and Cu2+. by the pseudo-second-order model described the sorption kinetic data well according to the high correlation coefficient (R 2) obtained. The biosorption isotherm was fitted well by the Langmuir model, indicating possible mono-layer biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae. Moreover, the immobilized S. cerevisiae after the sorption of Cd2+ and Cu2+ could be regenerated and reused.  相似文献   

6.
Inhibition of Na+/K+-ATPase from gill plasma membranes of the shore crab Carcinus maenas by cadmium was investigated and compared with inhibitory effects by known antagonists (ouabain and Ca2+). For comparative considerations the Cd2+-inhibition of the enzyme from dog kidney was also tested. Na+/K+-ATPase from dog kidney and from crab gill differed greatly in sensitivity against ouabain. The inhibition constant K i of the dog enzyme amounted to 9.1 × 10−7 mol l−1, i.e. more than 300-fold smaller than the K i of 2.9 × 10−4 mol l−1 determined for the crab enzyme. Ca2+ inhibited the activity of Na+/K+-ATPase from crab gill plasma membranes with a K i of 4.3 × 10−4 mol l−1. The Na+/K+-ATPase from crab gill was inhibited by Cd2+ with a K i of 9.1 × 10−5 mol l−1. Cd2+ inhibited the Na+/K+-ATPase from dog kidney with a K i (6.4 × 10−5 mol l−1) comparable to that observed in the crab gill enzyme. Under experimental conditions Cd2+-inhibition of Na+/K+-ATPase was irreversible. Repeated washing, centrifugation and homogenization of the plasma membranes (four times) with Cd2+-free buffer did not restore any activity lost in the presence of 1 × 10−3 mol l−1 Cd2+. Since ouabain-insensitive (nonspecific) ATPases in the plasma membrane fraction of crab gills were inhibited by Cd2+ in the same way as Na+/K+-ATPase, the heavy metal is considered as an unspecific ATPase inhibitor. Comparing these results with literature data on Cd2+-binding to electrophoretically separated proteins suggests that Na+/K+-ATPase is a Cd2+-binding enzyme. The results obtained on Na+/K+-ATPase were reflected by Cd2+-inhibition of the branchial ion-transport functions depending on this enzyme. The transepithelial short-circuit current of isolated gill half lamellae, a direct measure of area-specific active ion uptake, and the transepithelial potential difference of isolated, perfused whole gills, also indicative of active ion uptake, were inhibited by the heavy metal in a time- and dose-dependent mode. Remarkably these inhibitions were also irreversible. These findings are ecologically and biomedically significant: even when the actual environmental or tissue concentrations measured are low, biological microstructures such as Na+/K+-ATPase may accumulate the heavy metal by tight binding over prolonged periods until the first inhibitory effects occur. Received: 25 June 1997 / Accepted: 25 August 1997  相似文献   

7.
Removal of Cu2+, Cd2+, Pb2+, and Zn2+ from aqueous solutions by activated carbon prepared from stems and seed hulls of Cicer arietinum, an agricultural solid waste, has been studied. The influence of various parameters, such as pH, contact time, adsorbent dose, and initial concentration of metal ions on removal was evaluated. The activated carbon was characterized by FT-IR spectroscopy, X-ray diffraction, and elemental analysis. Sorption isotherms were studied using Langmuir and Freundlich isotherm models. All experimental sorption data were fitted to the sorption models using nonlinear least-squares regression. The maximum adsorption capacity values for activated carbon prepared from Cicer arietinum waste for metal ions were 18 mg g?1 (Cu2+), 18 mg g?1 (Cd2+), 20 mg g?1 (Pb2+), and 20 mg g?1 (Zn2+), respectively. The Freundlich isotherm model fit was best, followed by the pseudo-second-order kinetic model. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ions and for regeneration of the adsorbent.  相似文献   

8.
To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4?C7 wider than that for raw L. edodes (pH 6?C7). In the presence of Pb2+ concentration varying from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single-metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin-Radushkevich models. The Cd2+ adsorption capacities (q m) in single-metal solution were 6.448 mg·L?1 and 2.832 mg·L?1 for immobilized and raw L. edodes, respectively. The q m of immobilized L. edodes were 1.850 mg Cd·g?1 in Cd2+ + Pb2+ solution and 3.961 mg Cd·g?1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was -OH, -NH, -CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA-SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.  相似文献   

9.
Several aquatic environments have been contaminated with heavy metals dumped via industrial effluents. Numerous studies have been published regarding the removal of single metals from aqueous solutions by microalgal biomass. However, such studies do not reflect the actual problem associated with industrial effluents because usually more than one metal species is present. Here we studied the biosorption capacity of Zn2+ and Cd2+ as single- and binary-metal systems by two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, isolated from a polluted site in Northern Portugal. For each metal independently, D. pleiomorphus showed a higher metal sorption capacity than S. obliquus, at concentrations ranging from 60 to 300 mg/l (except 150 mgCd/l). Maximum amounts of Zn2+ and Cd2+ removed were 22.3 and 60.8 mg/g by S. obliquus, and 83.1 and 58.6 mg/g by D. pleiomorphus. In binary-metal solutions, S. obliquus was in general able to remove Zn2+ to higher extents than Cd2+, whereas the opposite was observed with D. pleiomorphus. The simultaneous uptake of Zn2+ and Cd2+ by both microalgae was considerably lower than that of their single-metal counterparts, at equivalent concentrations. Although microalgal uptake from binary-metal solutions was lower than from single-metal ones, the wild microalgae selected were able to efficiently take up mixtures of Zn2+ and Cd2+ up to 300 mg/l of both metals—thus materializing a promising bioremediation vector for polluted waters.  相似文献   

10.
11.
Sorption by humic acids is known to modify the bioavailability and toxicity of metals in soils and aquatic systems. The sorption of cadmium(II) and copper(II) to two soil humic acids was measured at pH 6.0 using ion-selective electrode potentiometric titration at different temperatures. Sorption reactions were studied with all components in aqueous solution, or with the humates in suspension. Adsorption reactions were described using a multiple site-binding model, and a model assuming a continuous log-normal distribution of adsorption constants. Adsorption of Cu2+ was more favourable than adsorption of Cd2+. The log-normal distribution model provided the closest fit to observations and allowed parameterisation of adsorption data using a mean adsorption constant (log K μ). Sorption of Cd2+ to dissolved humic acids increased slightly in extent and sorption affinity with increasing temperature, but the effect was small (log K μ 2.96–3.15). A slightly greater temperature effect occurred for sorption of Cd2+ to solid-phase humic acids (log K μ 1.30–2.08). Sorption of copper(II) to both aqueous- and colloidal-phase humates showed more pronounced temperature dependence, with extent of sorption, and sorption affinity, increasing with increasing temperature (log K μ 3.4–4.9 in solution and 1.4–4.5 in suspension). The weaker adsorption of Cd2+ than Cu2+, and smaller temperature effects for dissolved humates than suspended humates, suggested that the observed temperature effects had a kinetic, rather than thermodynamic, origin. For any metal-to-ligand ratio, free metal ion concentration, and by inference metal bioavailability, decreased with increasing temperature. The consistency of the data with kinetic rather than thermodynamic control of metal bioavailability suggests that equilibrium modelling approaches to estimating bioavailability may be insufficient.  相似文献   

12.
Microbial communities (phospholipid fatty acid pattern, bacterial growing strategies, eco-physiological index (EPI) and total bacteria counts, as a number of heterotrophic cuhurable bacteria), substrate-induced respiration (SIR), and nitrogen mineralization were studied in three Mediterranean soils at three different depth levels (A, B and C). Soils were experimentally treated with a final concentration of 1000 ppm of trace metals (Cu2+, Zn2+, Al3+, Fe2+, Pb2+, Ni2+, Mn2+, Cr3+ and Cd2+). Soils were stored in 571 plastic containers for one year, and watered with 1001 during this period. Leachate was recovered through a bottom tap. Samples of the three depths were studied. Soil microbial communities showed different effects to other studies presented in the literature, but carried out on non-Mediterranean soils. Dramatic differences were found between treated soils and untreated ones, but not between soils or horizons. the treated soil displayed a decrease in CFUs, SIR N-mineralization and EPI together with a dominance of r-growing strategists. the relative moles percent of several PLFAs, especially 15:0, 16: 1ω7, cy17: 0, br18:0 and 18: 1ω7 decreased because of the pollution of soils, whereas 10Me16, 18:2ω6, cy19:0, i16:0 and br17:0 showed higher values than in untreated soils.  相似文献   

13.
Complex formation of Cd2+ and Zn2+ with thiol derivatives has been investigated by differential pulse polarography. The binding of Cd2+ and Zn2+ with cysteine (CySH), glutathione (GSH) and the model peptide N‐acetyl‐cysteine‐methylamide (ASH) reveals different stoichiometry. Thus, Cd2+ forms 1:1 and 1:2 complexes with CySH while 1:2 and 1:4 complexes have been observed with GSH and ASH, respectively. Overall formation constants of Cd2+ with CySH (Iogβ 2 15.3) and with GSH (Iogβ52 14.4) have been estimated using competitive complexation with nitrilotriacetic acid (NTA). Investigation of competition between Zn2+ and Cd2+ for the thiol complexation has underlined the role played by the amino group in CySH for the stabilization of Zn complexes in contrary to Cd complexes.  相似文献   

14.
A sensitive and efficient method for preconcentration of trace amounts of some metal ions such as Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, Cr3+, and Fe3+ ions based on modification of sodium-dodecyl-sulphate (SDS) coated alumina with 1-(6-(-(2-hydroxynaphthalen-1-yl) methyleneamino) hexylimino) methyl) naphthalen-2-ol (HNMAHN) is reported. The method is based on the uptake of these ions following their chelation with HNMAHN and their recovery using a suitable eluent. The influence of parameters such as pH, concentration of ligand and amount of coated alumina, SDS concentration, eluent (type and concentrations), and elution volume on metal ion recoveries are investigated. The preconcentration factor is 150 (10?mL elution volume) for a 1500?mL sample volume. The method has been successfully applied for extraction and determination of these ions content in some real samples. Extraction efficiency is generally >95% with low relative standard deviations between 1.8% and 2.4 %.  相似文献   

15.
This investigation was carried out to determine the hydrogeochemical characteristics of the Kirkgeçit and Ozancik hot springs. The study areas are located northeast and southwest of the town of Çan, Çanakkale. During the investigation, geological maps of the hot springs and its surroundings were prepared, and hot waters and rock samples were collected from the study sites. The Paleogene–Neogene aged andesite, trachyandesite, andesitic tuff, silicified tuff and tuffites form the basement rocks in the Ozancik hot spring area. In the Kirkgeçit hot spring area, there are Lower Triassic aged mica and quartz schists at the basement rocks. The unit is covered by limestones and marbles of the same age. They are overlain by Quaternary alluvial deposits. A chemical analysis of the Kirkgeçit hot water indicates that it is rich in SO4 2– (1200.2 mg L–1), Cl (121.7 mg L–1), HCO3 (32.5 mg L–1), Na+ (494 mg L–1), K+ (30.2 mg L–1), Ca2+ (102 mg L–1), Mg2+ (15.2 mg L–1), and SiO2 (65.22 mg L–1). Chemical analysis of the Ozancik hot water indicates that it is rich in SO4 2– (575 mg L–1), Cl (193.2 mg L–1), HCO3 (98.5 mg L–1), Na+ (315 mg L–1), K+(7.248 mg L–1), Ca2+ (103 mg L–1), Mg2+ (0.274 mg L–1), and SiO2(43.20 mg L–1). The distribution of ions in the hot waters on the Schoeller diagram has an arrangement of r(Na++K+)>rCa2+>rMg2+ and r(SO4 2–)>rCl>r(HCO3 ). In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination. The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organisation and Turkish Standards. The use and the effects of the hot water on human health are also discussed in the paper.  相似文献   

16.
A polymer with characteristics similar to those of humic acids was obtained by synthesis reactions from oxidative polymerization in an alkaline medium using para-benzoquinone, hydroquinone and 4-aminobenzoic acid as precursors. Samples of natural and synthetic humic acid were used to examine the adsorption behavior of Cu2+ ions on these substrates. The mathematical models described by Langmuir and Freundlich equations were applied, yielding the maximum adsorption intensity values K′ (Langmuir), maximum adsorption capacity, b (Langmuir) and the adsorbent adsorption capacity, m (Freundlich). Based on solubility studies, pH 3 was selected for the development of the adsorption experiment. The Cu2+ ion presented a favorable adsorption, with RL (equilibrium parameter) responses in Langmuir isotherms falling within the desirable ranges.  相似文献   

17.
This study focused on the biosorption of trivalent chromium onto mycelial bacterium (Streptomyces rimosus) biomass from effluent of tannery. The biomass was prepared by treatment with alkali. Fourier transforms-infra red analysis of the mycelial bacterial revealed the presence of carboxyl groups as possible binding sites. Experimental parameters affecting biosorption processes such as pH contact time were studied. Langmuir, Freundlich, and Temkin models were applied to describe the biosorption isotherms. The Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of S. rimosus biomass for trivalent chromium was found to be 83 mg g?1 at pH 4.8 and 3 g L?1 biomass dosage, 300 min equilibrium time and 20°C. Kinetic evaluation of experimental data showed that the biosorption processes of trivalent chromium followed pseudo-second-order kinetics well.  相似文献   

18.
Effects of heavy metals on lysosomes were studied in living cells from the mussel (Mytilus galloprovincialis Lam.). Haemolymph cells were obtained from the mussel adductor muscle, stained with neutral red (NR), and analysed by digital imaging to evaluate NR retention times within lysosomes. Exposure to Hg2+, Cd2+ and Cu2+ induced a reduction of NR retention time, indicating lysosomal membrane destabilisation. The intensity of these effects was correlated with the metal affinity for sulfhydryls. In contrast, Zn2+ showed no effect on lysosomes. Moreover, 200 μM Zn2+ protected lysosomes against the effects of Cd2+ and Cu2+, but not against Hg2+. Cell loading with the fluorescent pH probe Lyso Sensor followed by digital imaging showed a rise of lysosomal pH induced by Cd2+ and Hg2+, while Zn2+ prevented the effect of Cd2+ and also partially that of Hg2+. The different protective effect of Zn2+ against Hg2+ suggests a dual action of Hg2+ on lysosomes, possibly involving both membrane destabilisation and proton pump inhibition. Cell exposure to 17 β-estradiol also caused a reduction of NR retention time, which was synergistic to that of Hg2+. This suggests a common pathway between metals and hormone, possibly involving Ca2+ signaling. Received: 17 November 1999 / Accepted: 29 June 2000  相似文献   

19.

A resin synthesized from tamarind kernel powder possesses high selectivity for metal ions. Distribution coefficients for some metal ions has been determined by the batch method. The influence of pH on ion exchange capacity and K d value of metal ions were studied. The resin has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, chemical composition and ion exchange capacity (IEC). The selectivity order is Pb2+?>?Cu2+?>?Fe2+?>?Zn2+?>?Ni2+. Removal of metal ions from the aqueous solution and from effluents of a steel mill has been studied.  相似文献   

20.
A method for the solid phase extraction of trace metals, namely Co, Cu, Pb, Ni and Zn, from environmental and biological samples using column Amberlite XAD-7 loaded with 2-hydroxy-propiophenone-4-phenyl-3-thiosemicarbazone (HPPPTSC) and determination by inductively coupled spectrometry (ICP–AES) has been developed. The reagent has the capacity to form chelate complexes with the metals because of three binding sites in the reagent molecule. The optimum experimental conditions for the quantitative sorption of five metals, pH, effect of flow rate, concentration of eluent, sorption capacity and the effect of diverse ions on the preconcentration of analytes have been investigated. The sorption capacity of the resin has 83, 127, 35, 88 and 85?µmol?g?1 for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+, respectively. The preconcentration factors for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ were 100, 110, 120, 140 and 150, respectively. The accuracy of the proposed procedure was evaluated by standard reference materials. The achieved results were in good agreement with certified values. The proposed method was applied for the determination of trace metals in river water and plant leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号