首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study arsenic contaminated simulated water and groundwater was treated by the combination of biological oxidation of tri-valent arsenite [As (III)] to penta-valent arsenate [As (V)] in presence of Acidothiobacillus ferrooxidans bacteria and its removal by adsorptive filtration in a bioreactor system. This method includes the immobilisation of A.ferrooxidans on Granulated Activated Carbon (GAC) capable of oxidising ferrous [Fe (II)] to ferric [Fe (III)]. The Fe (III) significantly converts the As (III) to As (V) and ultimately removed greater than 95% by the bed of GAC, limestone, and sand. The significant influence of Fe (II) concentration (0.1–1.5?gL?1), flowrate (0.06–0.18?Lh?1), and initial As (III) concentration (100–1000?µgL?1) on the arsenic removal efficiency was investigated. The simulated water sample containing the different concentration of As (III) and other ions was used in the study. The removal of other co-existing ions present in contaminated water was also investigated in column study. The concentration of arsenic was found to be <10?µgL?1 which is below Maximum Contaminant Level (MCL) as per WHO in treated water. The results confirmed that the present system including adsorptive-filtration was successfully used for the treatment of contaminated water containing As (III) ions.  相似文献   

2.
The photodegradation of atrazine and the photochemical formation of Fe(II) and H2O2 in aqueous solutions containing salicylic acid and Fe(III) were studied under simulated sunlight irradiation. Atrazine photolysis followed first-order reaction kinetics, and the rate constant (k) corresponding to the solution of Fe(III)-salicylic acid complex (Fe(III)-SA) was only 0.0153 h?1, roughly one eighth of the k observed in the Fe(III) alone solution (0.115 h?1). Compared with Fe(III) solution, the presence of salicylic acid significantly enhanced the formation of Fe(II) but greatly decreased H2O2 generation, and their subsequent product, hydroxyl radical (˙OH), was much less, accounting for the low rate of atrazine photodegradation in Fe(III)-SA solution. The interaction of Fe(III) with salicylic acid was analyzed using Fourier-transform infrared (FTIR) spectroscopy and UV-visible absorption, indicating that Fe(III)-salicylic acid complex could be formed by ligand exchange between the hydrogen ions in salicylic acid and Fe(III) ions.  相似文献   

3.
A novel cellulose-based adsorbent, iron(III)-coordinated amino-functionalised poly(glycidylmethacrylate)-grafted cellulose [Fe(III)–AM-PGMACell] was developed for the removal of phosphate from water and wastewater. The scanning electron micrograph showed that AM-PGMACell has a rougher surface than cellulose and the adsorption of Fe(III) on AM-PGMACell made the surface even rougher. Infrared spectroscopy revealed that amino groups on the surface of AM-PGMACell complexed with Fe(III) played an important role in the removal of phosphate from solutions. X-Ray diffraction patterns showed a decrease in crystallinity after graft copolymerisation onto cellulose. The effects of contact time, initial sorbate concentration, pH, agitation speed, dose of adsorbent and temperature on the removal process were investigated. Maximum removal of 99.1% was observed for an initial concentration of 25 mg·L ?1 at pH 6.0 and an adsorbent dose of 2.0 g·L ?1. A two-step pseudo-first-order kinetic model and Sips isotherm model represented the measured data very well. Complete removal of 11.6 mg·L ?1 phosphate from fertiliser industry wastewater was achieved by 1.6 g·L ?1 Fe(III)–AM-PGMACell. The adsorbent exhibited very high reusability for several cycles. Overall, the study demonstrated that Fe(III)–AM-PGMACell can be used as an efficient adsorbent for the removal and recovery of phosphate from water and wastewater.  相似文献   

4.
Pentachlorophenol (PCP) in contaminated soil was removed by treatment with aqueous solutions of iron(III)-porphyrin complexes as catalysts and potassium monopersulfate (KHSO5) as the oxygen donor. The contaminated soils were artificially prepared by spiking PCP to the kaolin and ando soils. Three types of iron(III)-porphyrin complexes, tetra(?p-sulfophenyl) porphineiron(III) (Fe(III)-TPPS), tetra(N-methyl-4-pyridil)porphineiron(III) (Fe(III)-TMPyP) and heme, were examined, and Fe(III)-TPPS was found to be the most effective for removing PCP. Although the sequential addition of KHSO5 was examined, in an attempt to improve the efficiency of PCP removal, it was not effective. In a preliminary test of various aqueous solutions, the addition of humic acid (HA), with a lower degree of humification, led to a significant enhancement in PCP removal. When HA was added to the soil system, the percentages of PCP removal were increased by up to 10% compared to the absence of HA. Therefore, the addition of HA to the catalytic system was useful in enhancing PCP removal from contaminated soil.  相似文献   

5.
Removal of selenite [Se (IV)] from aqueous solution on to industrial solid ‘waste’ Fe(III)/Cr(III) hydroxide as adsorbent was investigated in the present article. Maximum adsorption was found to be at pH 4.0. Pretreated Fe(III)/Cr(III) hydroxide was found to be more efficient for the removal of selenite compared to untreated adsorbent. Langmuir and Freundlich isotherms have been studied. The Langmuir adsorption capacity (Q 0) of the pretreated and untreated adsorbents was found to be 15.63 and 6.04?mg?g?1, respectively. The adsorption process fit into the second-order kinetics. Thermodynamic parameters show that the adsorption process is spontaneous and endothermic in the temperature range 32 to 60°C. Coexisting anions vanadate and phosphate significantly affect the adsorption of selenite for both the pretreated and untreated adsorbents. Molybdate, thiocyanate, sulphate, nitrate and chloride do not significantly affect the removal of selenite for pretreated adsorbent.  相似文献   

6.
Utilization of Amberlite XAD-2 surface modified by covalent immobilization of brilliant green through an azo spacer for adsorptive enrichment of Sn(II) from environmental and biological samples was highlighted. The resulting resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and scanning electron microscopy. The resin retained Sn(II) ions at an optimum pH of 9.5 with a sorption capacity of 40 mg g?1. The modified sorbent could be reused for 10 cycles without significant changes in sorption capacity. The recovery of Sn(II) was 98% when eluted with 0.1 mol L?1 ethylenediaminetetraacetic acid. Scatchard analysis revealed that binding sites in the modified resin were homogeneous. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Temkin, and Redlich–Peterson isotherm models. The method was applied with satisfactory results for determination of Sn(II) ions in human plasma and sea water.  相似文献   

7.
Adsorption of vanadate(V) from aqueous solution onto industrial solid ‘waste’ Fe(III)/Cr(III) hydroxide was investigated. HCl treated Fe(III)/Cr(III) hydroxide was found to be more efficient for the removal of vanadate(V) compared to untreated adsorbent. The adsorption follows second-order kinetics. Langmuir and Freundlich isotherms have been studied. The Langmuir adsorption capacity (Q 0) of the treated and untreated adsorbents was found to be 11.43 and 4.67 mg g−1, respectively. Thermodynamic parameters showed that the adsorption process was spontaneous and endothermic in the temperature range 32–60°C. Maximum adsorption was found at system pH 4.0. The adsorption mechanism was predominantly ion exchange. Effect of other anions such as phosphate, selenite, molybdate, nitrate, chloride, and sulfate on adsorption of vanadium has been examined.  相似文献   

8.
Luo  Luna  Wang  Zhen  Guo  Qin  Wei  Xipeng  Hu  Jianpeng  Luo  Yu  Jiang  Jin 《Environmental Chemistry Letters》2022,20(1):91-99

Water contamination by emerging organic pollutants is calling for advanced methods of remediation such as iron-activated sulfite-based advanced oxidation. Sulfate radical, SO4??, and hydroxyl radical, ?OH, are the primary reactive intermediates formed in the Fe(III)/sulfite system, yet the possible involvement of Fe(IV) produced from Fe(II) and persulfates is unclear. Here we explored the role of Fe(IV) in the Fe(III)/sulfite system by methyl phenyl sulfoxide (PMSO) probe assay, electron paramagnetic resonance spectra analysis, alcohol scavenging experiment, and kinetic simulation. Results show that PMSO is partially transformed into methyl phenyl sulfone (PMSO2), thus evidencing Fe(IV) formation. The remaining degradation of PMSO is due to SO4?? and ?OH. The contribution of Fe(IV) versus free radicals is progressively promoted when the Fe(III)-sulfite reaction proceeds, with an upper limit of 80–90%. The contribution of Fe(IV) versus free radicals increases with Fe(III) and sulfite dosages, and decreases with increasing pH. Overall, our findings demonstrate the involvement of Fe(IV) in the Fe-catalyzed sulfite auto-oxidation process.

  相似文献   

9.
Small amounts of bivalent cations, usually provided by Mg2+, are in the living cell necessary for the biological activity of t‐RNA as these bivalent cations influence the tertiary and secondary structure of this globular polynucleotide.

In context with the discussed possibility of carcinogenic actions of ingested Cd it is of particular interest to check whether there exist specific strong interactions of this toxic heavy metal with nucleic acids.

Therefore, the binding of the toxic heavy metal ion Cd2+ and the essential heavy metal ion Mn2+ to t‐RNA and for comparison to DNA and the polynucleotides poly‐U, poly‐A and poly‐A‐poly‐U has been studied. Free metal ion concentrations have been determined by differential pulse polararography. Association constants and the number of binding sites have been evaluated by the Scatchard method and alternatively according to a simple electrostatic model of the polyelectrolytes. With the Scatchard method for t‐RNA and all polynucleotides with helical structure two different binding sites of different strength are observed. Those with higher association constants are assigned to the helical parts of t‐RNA. Interaction sites with low association constants correspond to the parts with no ordered tertiary structure, as their exclusive occurrence for poly‐U, having a completely stochastic coil structure, reflects. The values of the association constants for the stronger and weaker association sites are in the respective polynucleotides for both investigated bivalent metal ions of comparable magnitude. This emphasizes that the interaction is essentially of electrostatic nature and depends primarily on the charge of the interacting species.

Thus the specific strong interaction of Cd by the intercalation into the tertiary structure of nucleic acids or by chelation of their base units can be ruled out as one possibility for carcinogenity of Cd.

Moreover, under physiological conditions the high excess of competitive Mg2+ will suppress the interaction of Cd based on electrostatic forces.  相似文献   

10.
Phenol removal by n/m Fe in the presence of H2O2 was highly effective. Increasing the amounts of n/m Fe and H2O2?increased the phenol removal rate. Phenol removal was decreased with an increase in the concentration of phenol. The natural pH (6.9) of the solution was highly effective for phenol removal. The pseudo-first-order kinetics was best fitted for the degradation of phenol. The study investigates the magnetic separation of Fe from automobile shredder residue (ASR) (<0.25 mm) and its application for phenol degradation in water. The magnetically separated Fe was subjected to an ultrasonically assisted acid treatment, and the degradation of phenol in an aqueous solution using nano/micro-size Fe (n/m Fe) was investigated in an effort to evaluate the possibility of utilizing n/m Fe to remove phenol from wastewater. The prepared n/m Fe was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The effects of the dosages of n/mFe, pH, concentration of phenol and amount of H2O2 on phenol removal were evaluated. The results confirm that the phenol degradation rate was improved with an increase in the dosages of n/mFe and H2O2; however, the rate is reduced when the phenol concentration is higher. The degradation of phenol by n/mFe followed the pseudo-first-order kinetics. The value of the reaction rate constant (k) was increased as the amounts of n/m Fe and H2O2 increased. Conversely, the value of k was reduced when the concentration of phenol was increased. The probable mechanism behind the degradation of phenol by n/m Fe is the oxidation of phenol through hydroxyl radicals which are produced during the reaction between H2O2 and n/m Fe.  相似文献   

11.
A spectrophotometric procedure for the anionic diazo dye Congo red was proposed based on nanosilver catalyzed oxidation by potassium iodate in a hydrochloric acid medium. The calibration graph is linear for 0.8–240?mg?L?1, and the detection limit is 0.6?mg?L?1. Most foreign ions do not interfere with the determination, except for Cu(II), Fe(III), and Cr(VI). The interferences of Cu(II) and Fe(III) could be eliminated by masking with ethylene diamine tetraacetate, and that of Cr(VI) by reducing to Cr(III) with ascorbic acid. The typical features of this procedure are that it is sensitive for Congo red, and the determination could be carried out at room temperature. It had been used for the determination of Congo red in the Ganjnameh river water sample.  相似文献   

12.
A polyvinylidene fluoride-based membrane bearing the diethylenetriaminepentaacetic acid chelating group was employed to recover Cu(II) from the Cu(II)-ethylenediaminetetraacetic acid complex aqueous solution. Effects of Ca(II), Fe(II), and Fe(III) on Cu(II) uptake were investigated by static batch adsorption tests and dynamic adsorption filtration. Isotherms, kinetics, and breakthrough curves of Cu(II) uptakes in the presence of the three cations at concentrations of 1 mmol L?1 were elucidated. The three cations showed a positive effect on the Cu(II) uptake; the stimulative roles were in the order of Fe(III) > Fe(II) > Ca(II). They did not alter the adsorption behavior of the membrane; adsorption isotherms and kinetics could be described by Langmuir and Lagergren second-order models, and Cu(II) adsorption was a spontaneous and exothermic process. The presence of Ca(II), Fe(II), and Fe(III) increased the sorption capacity of the membrane stack by 1.3, 1.9, and 3 times. Breakthrough time and the exhaustion time of membrane stacks were also extended.  相似文献   

13.
Titanium dioxide (TiO2) is a promising sorbent for As removal. There are two main and physico-chemically distinct polymorphs of TiO2 in nature, namely anatase and rutile. Since the difference of arsenic removal by the two polymorphs of TiO2 is now well known, study on the arsenic removal efficiency and the underlying mechanism is of great significance in developing new remediation strategies for As-polluted waters. Here batch experiments were carried out in combination with instrumental analysis of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) to investigate the effects, influential factors and mechanisms of As removal from aqueous solution by two types of nano TiO2 crystals. The adsorption behavior of anatase and rutile for As(V) and As(III) are well described by Freundlich equations. Anatase had higher As removal efficiency and adsorption capacity than rutile. Solution pH had no influence on the As adsorption of anatase TiO2, whereas the As removal by rutile TiO2 was increased by 7?C18% with pH from 4 to 10. Presence of accompanying anions such as phosphate, silicate, nitrate and sulfate, decreased the As(V) and As(III) removal by both crystals, with phosphate being the most effective. However, removal of As by rutile TiO2 was greatly enhanced in the presence of divalent cations i.e. Ca2+ and Mg2+. Shading of light decreased the removal of As(V) and As(III) of anatase by 15.5% and 17.5%, respectively, while a slight increase of As removal was observed in the case of Rutile TiO2. FT-IR characterization of As(V) or As(III)-treated nano TiO2 crystals indicated that both Ti-O and As-O groups participated in As adsorption. Both FT-IR and XPS analysis demonstrated that As(III) was photooxidated into As(V) when adsorbed by anatase under the light condition. Thus, the effect of crystal types and light condition on As removal should be taken into consideration when nano TiO2 is applied for As removal from water.  相似文献   

14.
Activated carbon modified by impregnation with iron (III) chloride solution (Fe‐ACs) were studied to try to raise their adsorption capacity for hydrogen sulfide, a malodorous substance.

The surface area and pore volume of activated carbon were decreased by impregnation, but the amount of hydrogen sulfide adsorbed onto Fe‐AC was larger than that onto raw activated carbon (R‐AC). In particular, a large increase of the amount adsorbed onto Fe‐AC was noted at low equilibrium pressure. It was assumed that the increase of amount of hydrogen sulfide adsorbed onto Fe‐AC was due to the chemical interaction between iron (III) chloride on the pores in addition to the physical adsorption onto pores of activated carbon. Fe‐AC shows a high selectivity for hydrogen sulfide.  相似文献   

15.

Biochar derived from food waste was modified with Fe to enhance its adsorption capacity for As(III), which is the most toxic form of As. The synthesis of Fe-impregnated food waste biochar (Fe-FWB) was optimized using response surface methodology (RSM), and the pyrolysis time (1.0, 2.5, and 4.0 h), temperature (300, 450, and 600 °C), and Fe concentration (0.1, 0.3, and 0.5 M) were set as independent variables. The pyrolysis temperature and Fe concentration significantly influenced the As(III) removal, but the effect of pyrolysis time was insignificant. The optimum conditions for the synthesis of Fe-FWB were 1 h and 300 °C with a 0.42-M Fe concentration. Both physical and chemical properties of the optimized Fe-FWB were studied. They were also used for kinetic, equilibrium, thermodynamic, pH, and competing anion studies. Kinetic adsorption experiments demonstrated that the pseudo-second-order model had a superior fit for As(III) adsorption than the pseudo-first-order model. The maximum adsorption capacity derived from the Langmuir model was 119.5 mg/g, which surpassed that of other adsorbents published in the literature. Maximum As(III) adsorption occurred at an elevated pH in the range from 3 to 11 owing to the presence of As(III) as H2AsO3? above a pH of 9.2. A slight reduction in As(III) adsorption was observed in the existence of bicarbonate, hydrogen phosphate, nitrate, and sulfate even at a high concentration of 10 mM. This study demonstrates that aqueous solutions can be treated using Fe-FWB, which is an affordable and readily available resource for As(III) removal.

  相似文献   

16.
We show that the degradation of phenol by Fe(III) and hydrogen peroxide is faster in the presence of humic acids. This is most likely due to faster reduction of Fe(III)-humate complexes by H2O2/HO2·/O2–· when compared with Fe(III)-H2O complexes. The fact that humic acids, a major class of naturally occurring compounds, favour the Fenton reaction has great relevance in the field of water and soil decontamination, where organic compounds usually have a negative effect. Furthermore, it adds insight into the self-depuration processes of natural aquifers.  相似文献   

17.
全氟化合物(PFASs)是一类具有疏水基团和亲水基团的新型污染物.目前,在环境条件对PFASs生物富集影响方面已开展了诸多研究,但有关碳质材料(CMs)和溶解性有机质(DOM)共存对PFASs在生物体内富集的影响还未见报道。为探讨这一问题,研究了沉积物-水体系中2种碳质材料木炭(W400)、多壁碳纳米管(MWCNT10)和4种DOM(丹宁酸、富里酸、蛋白胨和腐殖酸)对6种典型PFASs在摇蚊幼虫体内生物富集的影响。结果表明,暴露10 d后(已达到富集平衡状态),无论体系中是否存在CMs,添加1~50 mg C·L-1不同类型的DOM对PFASs在摇蚊幼虫体内生物富集的影响不显著。无论体系中是否存在DOM,添加CMs均能降低摇蚊幼虫体内PFASs的含量,且MWCNT10对PFASs生物富集的降低比例显著高于W400。与对照相比,添加0.4%的MWCNT10对摇蚊幼虫体内PFASs含量的降低比例为21%~56%,而同等添加量的W400对其降低比例均低于20%。这表明,在沉积物-水体系中,当CMs和DOM共存时,CMs是影响PFASs在摇蚊幼虫体内富集的主要因素,而少量DOM的引入对其影响不大。  相似文献   

18.
The kinetics of Cr(VI) reduction to Cr(III) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(VI) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (< 200 mesh) in 120 min). The reduction of hexavalent chromium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(VI) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coefficients (k obs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min?1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25°C and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min?1 were obtained at the temperature range of 288–308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticles > Fe0 nanoparticles > Fe0 powder > Fe0 filings. Electrochemical analysis of the reaction process showed that Cr(III) and Fe(III) hydroxides should be the dominant final products.  相似文献   

19.
The diet of cavity sponges on the narrow fringing reefs of Curaçao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found that phytoplankton and its derived DOM from the adjacent open sea and from reef overlying water is not the main source of food for most of the sponges examined nor is bacterioplankton. Interestingly, dual stable isotope signatures (δ13Corg, δ15Norg) and fatty acid biomarkers appoint coral mucus and organic matter derived from crustose coralline algae (CCA) as probable food sources for encrusting sponges. Mucus-derived DOM may contribute up to 66% to the diet of examined sponges based on results of dual isotope mixing model analysis. The contribution of CCA (as purported representative for benthic algae) was smaller with values up to 31%. Together, mucus- and CCA-derived substrates contributed for 48–73% to the diet of sponges. The presence of the exogenous fatty acid 20:4ω6 in sponges, which is abundant in coral mucus of Madracis mirabilis and in CCA, highlights these reef-derived resources as sources of nutrition for DOM feeding cavity sponges. The relatively high concentrations of exogenous 20:4ω6 in all sponges examined supports our hypothesis that the bulk of the food of the cavity sponge community is reef-derived. Our results imply that cavity sponges play an important role in conserving food and energy produced within the reef.  相似文献   

20.
Cell growth of a coastal marine diatom, Chaetoceros sociale, in the presence of different premixed organic-Fe(III) complexes [EDTA-Fe(III) (100:1 and 2:1), citric-Fe(III) (100:1) and fulvic-Fe(III) (0.1, 0.2 and 1 ppm C)] and solid amorphous hydrous ferric oxide [am-Fe(III) or Fe(III) hydroxide] were experimentally measured in culture experiments at 10 °C under 3000 lux fluorescent light. Fulvic-Fe(III) (0.1 and 0.2 ppm C) and citric-Fe(III) (100:1) induced maximal cell yields of C. sociale. The order of cell yields was: fulvic-Fe(III) (0.1 and 0.2 ppm C) ≥ citric-Fe(III) (100:1) > EDTA-Fe(III) (2:1) ≫ solid am-Fe(III) > EDTA-Fe(III) (100:1) ≫ fulvic-Fe(III) (1 ppm C). The short-term iron uptake rates by C. sociale in fulvic-Fe(III) (0.1 and 0.2 ppm C) and citric-Fe(III) (100:1) media were about five to six times faster than those in EDTA-Fe(III) (100:1) and solid am-Fe(III) media. The dissociative precipitation rates of premixed organic-Fe(III) complexes in seawater at 10 °C were determined by simple filtration (0.025 μm) involving γ-activity measurements of 59Fe. The order of estimated initial Fe(III) dissociative precipitation rates of these organic-Fe(III) complexes in seawater were nearly consistent with those of cell yields in the culture experiments and short-term iron uptake rates by C. sociale [except for fulvic-Fe(III) (1 ppm C) medium]. In fulvic-Fe(III) (0.1 and 0.2 ppm C), citric-Fe(III) (100:1) and EDTA-Fe(III) (2:1) media, the concentrations of dissolved organic-Fe(III) complexes in initial culture experiments are prone to supersaturate under the culture conditions. The supersaturated dissolved organic-Fe(III) complex in seawater supplies biologically available inorganic Fe(III) species in culture media through its dissociation at high pH and high levels of seawater cations. Therefore, the natural dissolved organic-Fe(III) complexes supplied by riverine input may play an important role in supplying bioavailable iron in estuarine mixing system and coastal waters. Received: 6 September 1998 / Accepted: 8 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号