首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
Coal combustion power plant flyash materials have been reported as useful soil amendments with agronomic and environmental benefits. This paper reports the efficacy of fluidized bed combustion (FBC) and flue gas desulfurization (FGD) byproducts, when amended with dairy, swine, and broiler litter manures, in reducing phosphorus (P) solubility and potential impact on water quality. At a rate of 400 g/kg, FBC reduced water soluble P by 60% for dairy and swine and 50% for broiler litter, as compared to un-treated control samples. Byproduct FGD had little effect when amended into dairy manure, but reduced water soluble P by nearly 80% when amended into swine and broiler manure at a rate of 250 g/kg. The amount of Ca added in the amendments together with pH of the mixture is the major contributing factor in soluble P reduction. Sequential extraction results showed that the flyash treatments shifted water soluble P into mainly bicarbonate extractable P. The latter is still considered available for crop uptake but less vulnerable for environmental losses. Coal combustion byproducts, when amended into manure and used properly, can provide a useful and viable option for improving nutrient management on animal farms.  相似文献   

2.
Coal combustion power plant flyash materials have been reported as useful soil amendments with agronomic and environmental benefits. This paper reports the efficacy of fluidized bed combustion (FBC) and flue gas desulfurization (FGD) byproducts, when amended with dairy, swine, and broiler litter manures, in reducing phosphorus (P) solubility and potential impact on water quality. At a rate of 400 g/kg, FBC reduced water soluble P by 60% for dairy and swine and 50% for broiler litter, as compared to un-treated control samples. Byproduct FGD had little effect when amended into dairy manure, but reduced water soluble P by nearly 80% when amended into swine and broiler manure at a rate of 250 g/kg. The amount of Ca added in the amendments together with pH of the mixture is the major contributing factor in soluble P reduction. Sequential extraction results showed that the flyash treatments shifted water soluble P into mainly bicarbonate extractable P. The latter is still considered available for crop uptake but less vulnerable for environmental losses. Coal combustion byproducts, when amended into manure and used properly, can provide a useful and viable option for improving nutrient management on animal farms.  相似文献   

3.
Agricultural practices should modify the diversity of soil microbes. However, the precise relationships between soil properties and microbial diversity are poorly known. Here, we study the effect of agricultural management on soil microbial diversity and C turnover in tropical grassland of north-eastern Laos. Three years after native grassland conversion into agricultural land, we compared soils from five land use management systems: one till versus two no-till rotational cropping systems, one no-till improved pasture and the natural grassland. Soils were incubated in microcosms during 64 days at optimum temperature and humidity. Bacterial and fungal diversity were evaluated by metagenomic 454-pyrosequencing of 16S and 18SrRNA genes, respectively. Changes in soil respiration patterns were evaluated by monitoring 12C- and 13C-CO2 release after soil amendment with 13C-labelled wheat residues. Results show that residue mineralization increased with bacterial richness and diversity in the tilled treatment 7 days after soil amendment. Native soil organic C mineralization and priming effect increased with fungal richness and diversity in improved pasture and natural grassland. No-till cropping systems represented intermediate situations between tillage and pasture systems. Our findings evidence the potential of controlling soil microbial diversity by agricultural practices to improve soil biological properties. We suggest the promotion of no-till systems as a fair compromise between the need for agriculture intensification and soil ecological processes preservation.  相似文献   

4.
The cadmium and lead contents in cattle manure taken from four agricultural areas exposed to different degrees of environmental pollution and in the livestock feeds grown in those places were measured by Atomic Absorption Spectrophotometer (AAS). The levels of cadmium and lead contamination in the manures of the cattle, which were fed in the areas far from industries, traffic or urbanization, were less than those that were closer to heavy traffic and industrial activities. The highest heavy metal content was found in cattle manure collected from the region with heavy traffic, followed by the industrial region and the rural region. Among the live stock feeds used in the present study, the highest levels of lead were found in grass; and the lowest levels were obtained from the samples of straw.  相似文献   

5.
• The α-diversities of resistome were lower in manure and compost than in soils. • There were significant correlations between the resistome and bacterial taxonomy. • Bacterial taxonomy was the highest in explaining resistome variances. Antibiotic resistance genes comprising antibiotic resistome are of great concern due to their increase in the environment. Recent evidence of shared resistomes between soils and animal husbandry has imposed potential risks to human health. However, the correlation between a given community’s resistome and bacterial taxonomic composition is controversial. Here, a transmission chain of resistomes from swine manure to compost and compost-amended soil were analyzed in five suburban areas of Beijing, China, with unamended agricultural soils as control soils. Antibiotic resistomes and bacterial taxonomic compositions were distinct between (I) manure and compost; and (II) compost-amended and control soils. In manure, compost, and compost-amended soils, the β-diversity of the resistome and bacterial taxonomic composition was significantly correlated, while no correlation was detected in control soils. Bacterial taxonomic composition explained 36.0% of total variations of the resistome composition, much higher than environmental factors. Together, those results demonstrated that antibiotic resistome was closely related to bacterial taxonomic composition along the suburban transmission chain.  相似文献   

6.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

7.
Ramirez KS  Lauber CL  Knight R  Bradford MA  Fierer N 《Ecology》2010,91(12):3463-70; discussion 3503-14
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. Although the effects of increased N inputs on plant communities have been reasonably well studied, few comparable studies have examined impacts on whole soil bacterial communities, though they play critical roles in ecosystem functioning. We sampled soils from two long-term ecological research (LTER) experimental N gradients, both of which have been amended with NH4NO3; a grassland at Cedar Creek (27 years of N additions) and an agricultural field at Kellogg Biological Station (8 years of N additions). By examining shifts in bacterial communities across these contrasting ecosystem types, we could test competing hypotheses about the direct and indirect factors that might drive bacterial responses to elevated N inputs. Bacterial community structure was highly responsive to N additions. We observed predictable and consistent changes in the structure of the bacterial communities across both ecosystem types. Our results suggest that bacterial communities across these gradients are more structured by N and/or soil carbon availability than by shifts in the plant community or soil pH associated with the elevated nitrogen inputs. In contrast to the pronounced shifts in bacterial community composition and in direct contrast to the patterns often observed in plant communities, increases in N availability did not have consistent effects on the richness and diversity of soil bacterial communities.  相似文献   

8.
Summary.  We studied the epiphytic bacterial communities of the summer leaves of eight perennial species naturally occurring in a Mediterranean ecosystem. The species differ in essential-oil content (from rich in essential oil to non-producers) and composition, and also in life form (from herbaceous species to tall shrubs). We compared the epiphytic bacterial communities on the basis of (i) their abundance, (ii) their metabolic profile (derived by use of the BIOLOG Ecoplate system) and (iii) richness and diversity of substrates that they use, as a measure of functional diversity. Among all species, the aromatic Melissa officinalis was the most abundantly colonized. The bacterial communities on the leaves of the aromatic Myrtus communis, Calamintha nepeta and Melissa officinalis, and also of Cistus incanus catabolized all 31 substrates offered; those on the evergreen-sclerophyllous species, Arbutus unedo and Quercus coccifera, catabolized only 14 and 17 substrates, respectively. Carbohydrates were consistently used abundantly by all communities, whereas carboxylic acids were most variably used. On average, the group of aromatic plants scored higher regarding bacterial abundance, and richness and diversity of substrates used by the bacterial communities on their leaves; the lowest values for both substrate-use indices were recorded in A. unedo. Bacterial abundance or richness or diversity of substrates used did not vary with leaf oil content. Abundance was positively correlated with both substrate-use indices. Results support claims that the antimicrobial effects of essential oils are not exerted so much under natural conditions as reports based on biassays with pathogens usually show. Although essential oils play a part in the microbial colonization of the phyllosphere, it is not likely that inhibition of phyllosphere bacteria is essential oils’ primary role, at least in the Mediterranean environment.  相似文献   

9.
Toward an ecological classification of soil bacteria   总被引:49,自引:0,他引:49  
Fierer N  Bradford MA  Jackson RB 《Ecology》2007,88(6):1354-1364
Although researchers have begun cataloging the incredible diversity of bacteria found in soil, we are largely unable to interpret this information in an ecological context, including which groups of bacteria are most abundant in different soils and why. With this study, we examined how the abundances of major soil bacterial phyla correspond to the biotic and abiotic characteristics of the soil environment to determine if they can be divided into ecologically meaningful categories. To do this, we collected 71 unique soil samples from a wide range of ecosystems across North America and looked for relationships between soil properties and the relative abundances of six dominant bacterial phyla (Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, alpha-Proteobacteria, and the beta-Proteobacteria). Of the soil properties measured, net carbon (C) mineralization rate (an index of C availability) was the best predictor of phylum-level abundances. There was a negative correlation between Acidobacteria abundance and C mineralization rates (r2 = 0.26, P < 0.001), while the abundances of beta-Proteobacteria and Bacteroidetes were positively correlated with C mineralization rates (r2 = 0.35, P < 0.001 and r2 = 0.34, P < 0.001, respectively). These patterns were explored further using both experimental and meta-analytical approaches. We amended soil cores from a specific site with varying levels of sucrose over a 12-month period to maintain a gradient of elevated C availabilities. This experiment confirmed our survey results: there was a negative relationship between C amendment level and the abundance of Acidobacteria (r2 = 0.42, P < 0.01) and a positive relationship for both Bacteroidetes and beta-Proteobacteria (r2 = 0.38 and 0.70, respectively; P < 0.01 for each). Further support for a relationship between the relative abundances of these bacterial phyla and C availability was garnered from an analysis of published bacterial clone libraries from bulk and rhizosphere soils. Together our survey, experimental, and meta-analytical results suggest that certain bacterial phyla can be differentiated into copiotrophic and oligotrophic categories that correspond to the r- and K-selected categories used to describe the ecological attributes of plants and animals. By applying the copiotroph-oligotroph concept to soil microorganisms we can make specific predictions about the ecological attributes of various bacterial taxa and better understand the structure and function of soil bacterial communities.  相似文献   

10.
Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities.  相似文献   

11.
为探究工业园区地下水和土壤细菌群落结构、多样性变化特征,采用高通量测序技术对地下水和土壤细菌16S r RNA基因高变区域进行序列测定。通过对Alpha多样性、物种组成、丰度和群落结构的分析,比较地下水和土壤细菌群落结构的异同。Alpha多样性的比较结果表明,土壤细菌群落多样性和丰富度明显高于地下水,地下水细菌群落多样性指数反映出地下水已受到周边污染源的影响。物种注释结果表明,地下水样品共检出48个细菌门,土壤样品共检出50个细菌门。变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)是地下水细菌群落的优势类群,共占93.54%,且该工业园区地下水细菌群落呈现出典型的淡水种群特征;土壤中优势细菌门为Proteobacteria、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、Firmicutes和芽单胞菌门(Gemmatimonadetes),共占85.21%。由于地下水和土壤两者的生态系统和理化环境的差异,致使Actinobacteria、Acidobacteria、绿弯菌门(Chloroflexi)、硝化螺旋菌门(Nitrospirae)、α-变形菌纲(Alphaproteobacteria)、δ-变形菌纲(Deltaproteobacteria)和Gemmatimonadetes占比在地下水和土壤细菌群落间差异显著,同时使地下水和土壤细菌群落各含有一些特有的优势细菌属(地下水2个,土壤4个)。基于高通量测序技术对工业园区样品的测序结果可以为地下水和土壤环境的生态评价提供方法依据。  相似文献   

12.
烟区轮作与连作土壤细菌群落多样性比较   总被引:5,自引:0,他引:5  
采用从土壤中直接提取土壤细菌总DNA,并用细菌16SrDNA特异性引物进行PCR扩增和变性梯度凝胶电泳(DGGE)的方法,对比研究了贵州福泉烟区轮作和连作对土壤细菌群落多样性的影响,每个处理样品3次重复在DGGE图谱中相似性较高,基本聚在一起,从整体证明了试验操作方法较为精确。由DGGE图谱可知,轮作土壤微生物条带数量15-31条不等,平均为23条。连作土壤微生物条带数量从7-25条不等,平均为18条。分别从每条泳道的条带数和光密度值两方面,对细菌群落多样性指标进行了比较。结果表明,轮作处理细菌群落丰富度指数均大于连作处理,轮作Shannon-wiener和辛普森指数(1/D)均大于连作,表明轮作微生物多样性较连作高,轮作方式可以提高植烟土壤细菌群落的多样性。  相似文献   

13.
Soil respiration is one of the main CO2 sources from terrestrial ecosystems. Soil respiration is therefore a major source of greenhouse gas. Knowledge of the impact of agronomic practices such as manuring on the stability, for example resistance and resilience, of heterotrophic C–CO2 respiration to disturbance is scarce. Here, we studied the stability of soil microbial heterotrophic respiration of two tropical soils from plots annually enriched or not with manure applications during more than 20 years. Stability was quantified after heating soils artificially. We hypothesized that field manuring would change the stability of the microbial community. Additionally, the impact of both manured and unmanured soils to addition of an organic cocktail was assessed under controlled conditions in order to discriminate the metabolic capacity of the microbial community, and to link the metabolic capacity up with the microbial heterotrophic soil respiration. Our results show that total respiration was not significantly different in manured and unmanured pots. Moreover, contrary to our hypothesis, manure amendment did not affect the stability (resistance, resilience) of the microbial abundance or the basal metabolism, in our experimental conditions. By contrast, the diversity of the bacterial community in heated soils was different from that in unheated soils. After heating, surviving microorganisms showed different carbon utilization efficiency, manuring stimulating the growth of different resistant communities, that is, r-strategist or K-strategist. Microbial community of manured soils developed in the presence of the organic cocktail was less resistant to heating than microbial community of unmanured plots.  相似文献   

14.
刘爱菊  方殿梅  王超  李梦红 《生态环境》2014,(12):1986-1990
随着养殖业的规模化发展,Cu、Zn等重金属元素作为饲料添加剂被广泛应用于畜禽养殖,并随着畜禽粪便的大量、广泛农用,Cu、Zn等低生物毒性的重金属元素在土壤中的逐渐累积以及污染问题日趋严重,这对土壤生态系统的稳定造成了严重的威胁。为探讨Cu胁迫下土壤生态功能的动态变化,文章采用室内模拟培养法,测定了红壤、黄土等8种典型土壤的潜在硝化势对Cu污染胁迫的时间效应;并利用统计分析手段研究了影响Cu胁迫下土壤的硝化功能恢复的主要因素。研究结果表明,在试验处理剂量下,Cu污染处理一周,各土壤潜在硝化势均受到完全抑制,即抑制率在80%以上;随着污染胁迫时间的延长,各土壤的硝化功能均有不同程度的恢复,且在540 d后,500 mg·kg-1 Cu处理土壤(除pH较低的红壤和黑土外)潜在硝化势的恢复率均达到其初始值的80%,即土壤硝化功能基本完全恢复;1000 mg·kg-1 Cu处理土壤(除褐土、棕壤和黄土3中土壤外)潜在硝化势的恢复率均显著低于80%。这表明Cu污染程度的增加可延迟土壤硝化功能的恢复。多元逐步回归分析表明,Cu 污染胁迫下土壤硝化功能的恢复与其初始硝化功能以及其对 Cu 耐受能力显著相关。由此可知,长期Cu污染胁迫下,土壤的硝化功能的恢复主要取决于土壤初始的硝化活性及其对Cu的耐受能力。  相似文献   

15.
By the 454 pyrosequencing technology, this research compared the bacterial communities in poplar plantation rhizosphere and bulk soil for an accurate understanding of bacterial community colonization in the two soil environments. The species annotation showed that rhizosphere soil contained 145 bacterial genera and bulk soil contained 141 bacterial genera, with 8 common genera shared by both at a relative abundance of more than 4%. The 8 genera in common were Acidobacterium GP1, Acidobacterium GP3, Acidobacterium GP6, Gemmatimonas, Bradyrhizobium, Burkholderia, Streptomyces and Acidobacterium GP4. The relative abundance of the same bacterial community was significantly different between rhizosphere and bulk soil environments. Alpha diversity analysis showed that the bacterial community diversity of rhizosphere soil was higher than that of bulk soil, but the difference was not significant. The results of bacterial communities sorting could reflect the variation of soil bacterial communities from rhizosphere to the bulk and the spatial variation among different sampling points, indicating a contribution of about 21.2% variance of bacterial communities by the effect of rhizosphere. Beta diversity analysis showed great difference between rhizosphere and bulk soil samples in bacterial community composition. There were 15 genera specific to rhizosphere soil and 11 to bulk soil. The abundance of 23 genera, mainly cellulose degrading bacteria and nitrogen-fixing bacteria, changed significantly. Selectivity of root to rhizosphere microorganisms is an important mechanism leading to significant differences in the rhizosphere microbial community composition and structure, which may significantly impact the carbon and nitrogen cycles of the root-soil interface.  相似文献   

16.
Judd KE  Crump BC  Kling GW 《Ecology》2006,87(8):2068-2079
An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate movement of DOM through catchments, and DOM was fed to downslope and control bacterial communities. Bacterial production was measured, and DOM chemistry and bacterial community composition (using denaturing gradient gel electrophoresis of 16S rRNA genes) were characterized following incubations. Bacterial production, dissolved organic carbon (DOC)-specific bacterial production, and DOC consumption were greatest in mesocosms fed soil water DOM; soil water DOM enhanced lake and stream bacterial production by 320-670% relative to lake and stream controls. Stream DOM added to lake bacteria depressed bacterial production relative to lake controls in the early season (-78%) but not the mid-season experiment. Addition of upslope DOM to stream and lake bacterial communities resulted in significant changes in bacterial community composition relative to controls. In four of five DOM treatments, the bacterial community composition converged to the DOM source community regardless of the initial inoculum. These results demonstrate that shifts in the supply of natural DOM were followed by changes in both bacterial production and community composition, suggesting that changes in function are likely predicated on at least an initial change in the community composition. The results indicate that variation in DOM composition of soil and surface waters influences bacterial community dynamics and controls rates of carbon processing in set patterns across the landscape.  相似文献   

17.
通过温室盆栽试验研究不同比例粉煤灰钝化污泥人工土壤上高麦草的生长发育及营养状况,试验结果表明:土壤中加入粉煤灰钝化污泥显著增加了高麦草的干物重.脱水污泥加入其鲜重的10%粉煤灰钝化后再按1∶1和1∶5体积比与土壤混合配成的人工土处理和加入其鲜重的35%粉煤灰钝化后再按1∶1体积比与土壤混合配成的人工土处理高麦草的产量都显著高于自然土壤施用化肥的处理,高麦草的发芽率也不受影响.随着粉煤灰加入量的增加,高麦草地上部Ca,Mg和B的浓度(w/%或w/mg.kg-1)增加而K,Fe,Mn和Zn的浓度下降,高麦草根中Fe,Mn,Cu和Zn的浓度显著高于其地上部中的浓度.所有粉煤灰钝化后污泥人工土壤高麦草都没有出现N和P的缺乏和重金属毒害,说明合适比例的粉煤灰钝化污泥人工土壤是高麦草的良好生长介质.  相似文献   

18.
Jiang L 《Ecology》2007,88(5):1075-1085
I assembled bacterial communities to explore the effects of bacterial diversity on multiple ecosystem functions, including bacterial community biovolume, decomposition of particulate organic matter, and biomass transfer to the next trophic level. The experiment used a two-way factorial design with four levels of bacterial diversity (one to four species) and the absence/presence of a bacterivorous ciliated protist Tetrahymena pyriformis as two main factors, and all possible combinations of the four bacterial taxa nested within each diversity level. Bacterial community biovolume increased as bacterial diversity increased, a result due largely to positive selection effects. Decomposition and consumer abundance, however, were unaffected by bacterial diversity, though both varied among bacterial composition treatments. Negative selection effects, the dominance of species that do not contribute significantly to ecosystem functioning, accounted for the lack of diversity effects on decomposition and consumer abundance. The presence of Tetrahymena reduced bacterial community biovolume but increased decomposition, without altering the diversity-functioning relationships. Decomposition was strongly linked with consumer abundance such that communities supporting larger consumer biomass exhibited higher decomposition rates. This study suggests that if the negative selection effect is common, as it might be when examining ecosystem variables other than biomass (due to the presence of keystone species that can contribute disproportionably to ecosystem functioning relative to their abundances), basic bacteria-mediated ecosystem processes, such as decomposition and energy transfer to the next trophic level, may not increase with bacterial diversity.  相似文献   

19.
To investigate the characteristic changes in soil bacterial community under rice-rice-rape rotation in southern China, soil samples from a 30-year crop rotation and continuous cropping system were collected. Clone library and gene sequence analysis were adopted. The PCR amplification was carried out using universal primers of the 16S rDNA gene. The amplified fragments were then used to construct a clone library. The subclones were sequenced and analyzed. The experimental analysis showed that, in July 2015, and October and April 2016, the Shannon Wiener index and richness index of bacteria from the rotation treatment soils were higher than those of the continuous cropping treatment soil. The soil bacterial diversity of the rotation treatment was higher than that of the continuous cropping treatment. The results of BLAST analysis in the GenBank showed that Proteobacteria accounted 55% of total bacteria in the rotation treatment soil, whereas it accounted for 45% of total bacteria in continuous cropping treatment soil. Gemmatimonadetes accounted for 13% of the total bacteria in rotation treatment and 10% in the continuous cropping treatment. The proportion of Acidobacteria, Firmicutes, and Planctomycetes in rotation soil was less than those in the continuous cropping soil. Proteobacteria and Gemmatimonadetes were the dominant flora in soil. The changes in the predominant bacteria affected the diversity of soil bacteria in rotation and continuous cropping. The sequence analysis showed that the dominant bacteria in the soil were Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, which higher than those in the rice-rice continuous cropping treatment. The sequences similar to Chloroflexi were observed in the rice-rice-rape rotation soils, but not in the continuous cropping soils. The results showed that the soil microbial population is conducted by agricultural tillage, and rice-rice-rape rotation increased the soil bacterial abundance compared with that of the rice-rice continuous treatment. © 2018 Science Press. All rights reserved.  相似文献   

20.
生物炭与炭基肥对大豆根际土壤细菌和真菌群落的影响   总被引:1,自引:0,他引:1  
土壤微生物在农田土壤生态系统中发挥重要作用,然而秸秆生物炭与炭基肥处理对微生物群落的影响以及对农田生态环境的意义尚不清楚.以黄淮海平原豆-麦轮作为研究对象,采用荧光定量PCR和Illumina高通量测序技术比较不同施肥方式对土壤细菌和真菌群落的丰度、组成和多样性差异,探究秸秆还田、生物炭以及炭基肥添加对根际土壤微生物群...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号