首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concentrations of 16 polycyclic aromatic hydrocarbons (∑ 16PAHs) were measured by gas chromatography equipped with a mass spectrometry detector (GC-MS) in 56 topsoil samples around Guanting Reservior (GTR), which is an important water source for Beijing. Low to medium levels of PAH contamination (mean=394.2±580.7 ng g?1 dry weight (d.w.)) was evident throughout the region. In addition, localised areas of high PAH contamination near steel and cement factories were identified, with ∑ 16PAHs concentrations as high as 4110 ng/g, dry weight (d.w.). There was a significant positive correlation (r2=0.570, p<0.01) between total organic carbon content and ∑ 16PAHs concentrations. Phenanthrene was the predominant compound, accounting for 27.2% of the ∑ PAH concentration, followed by chrysene>pyrene>benzo[a]anthracene≈ benzo[b]fluoranthene≈ benzo[a]pyrene. Four-ring PAH homologues (39%) were dominant. The higher proportion of 4–6 ring homologues, molecular indices, and the spatial distribution of PAH indicated that industrial discharges, incineration of wastes and traffic discharges were the major sources of soil PAHs around the water reservoir.  相似文献   

2.
北京地区表层土壤中多环芳烃的分布特征及污染源分析   总被引:6,自引:0,他引:6  
根据北京地区不同环境功能区62个样品的分析结果,讨论了研究区表层土壤中多环芳烃的分布特征及污染源类型。结果表明:(1)研究区表层土壤中检测到的多环芳烃主要包括萘、苊、菲、惹烯、三芴、荧蒽、芘、、苯并蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、苝、二苯并[a,h]蒽、茚并[1,2,3–cd]芘、苯并[g,h,i]苝及其同系物;(2)不同环境功能区表层土壤中多环芳烃的组成及质量分数均存在一定的差别,16种优先控制的多环芳烃质量分数为175.1~10 344 ng.g-1,其中城市中心区表层土壤中多环芳烃的质量分数最高,交通干线附近、工矿企业附近表层土壤中PAHs的质量分数较高,林地、果园和农田表层土壤中PAHs的质量分数较低;(3)表层土壤中PAHs既有来源于石油源,也有来源于化石燃料燃烧产物的,但不同功能区二者贡献存在差别,其中农业用地(林地、果园、农田)中PAHs主要来源于石油源(或部分来源于土壤母岩中的有机质),城区、交通干线附近及工矿企业附近表层土壤中PAHs污染源以化石燃料燃烧产物输入为主。  相似文献   

3.
多环芳烃(PAHs)具有高的疏水性,在水体中优先分布于沉积物.采用物种敏感性分布法(SSDs法),依据水生生物慢性毒性数据计算5%物种危害浓度(HC5);并结合欧盟委员会风险评价技术导则(TGD)进而得到沉积物预测无效应浓度(PNEC-sed),以报道的太湖的沉积物中浓度数据作为预测环境浓度(PECsed);用商值法P...  相似文献   

4.
The purpose of this study was to characterize the occurrence and size distributions of ten species of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of coking plants. Particulate-matter samples of four size fractions, including ≤2.1, 2.1–4.2, 4.2–10.2, and ≥10.2 μm, were collected using a Staplex234 cascade impactor during August 2009 at two coking plants in Shanxi, China. The PAHs were analyzed by a gas chromatograph equipped with a mass-selective detector. The concentrations of total particulate-matter PAHs were 1,412.7 and 2,241.1 ng/m3 for plants I and II, and the distributions showed a peak within the 0.1–2.1 μm size range for plant I and the 0.1–4.2 μm for plant II. The size distributions of individual PAHs (except fluoranthene) exhibited a considerable peak within the 0.1–2.1 μm size range in coking plant I, which can be explained by the gas–particle partition mechanism. The ambient air of the coking plant was heavily polluted by PAHs associated with fine particles (≤2.1 μm), and benzo[b]fluoranthene made the largest contribution to total PAHs. The exposure levels of coking-plant workers to PAHs associated with fine particles were higher than to PAHs associated with coarse particles. Benzo[b]fluoranthene, benzo[a]pyrene, and dibenzo[a,h]anthracene should be the primary pollutants monitored in the coking plant. This research constitutes a significant contribution to assessing the exposure risk of coking-plant workers and providing basic data for PAH standards for ambient air in coking plants.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.  相似文献   

6.
土壤改良剂对荧蒽、苯并[k]荧蒽提取和植物吸收的影响   总被引:1,自引:1,他引:0  
在温室条件下,利用盆栽实验研究了三种土壤改良剂(骨炭、活性炭、泥炭)对荧蒽和苯并[k]荧蒽的提取和黑麦草吸收的影响.结果表明,添加骨炭、活性炭和泥炭后,土壤中可提取态荧蒽和苯并[k]荧蒽的量比对照处理分别降低了43.1%-63.8%和35.2%-57.6%,在高剂量骨炭、活性炭和泥炭处理的土壤中,可提取态荧蒽和苯并[k]荧蒽的量降低幅度均比相应低剂量处理的降低幅度大,并且各处理的效果与对照相比均达到了显著差异(p<0.05);骨炭、活性炭和泥炭减少了荧蒽和苯并[k]荧蒽在黑麦草地下部分和地上部分的累积量,并且荧蒽和苯并[k]荧蒽在黑麦草地下部分和地上部分的累积量随着骨炭、活性炭和泥炭添加量的增加呈下降趋势.  相似文献   

7.
应用脂肪酸甲酯淋洗去除土壤中多环芳烃   总被引:4,自引:2,他引:4  
针对煤气厂土壤等高浓度多环芳烃污染土壤修复困难的现实,采用易生物降解的新型淋洗剂脂肪酸甲酯淋洗修复高浓度多环芳烃污染的土壤,同时进行了以甲醇、植物油(大豆油)作为淋洗剂的淋洗实验,比较不同淋洗剂的淋洗效果.结果证明脂肪酸甲酯对人工模拟污染土壤中蒽、荧蒽、芘、苯并(a)芘的去除率可以达到80%—95%,对煤气厂土壤中多环芳烃的去除效果也非常明显,总多环芳烃的去除率达到41%.脂肪酸甲酯的淋洗效果要优于其它两种淋洗剂.  相似文献   

8.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境中普遍存在的稠环类化合物,由于其对人体健康和生态环境产生较大危害,美国环保局将16种PAHs列为优先控制的污染物。PAHs也是太湖流域的主要污染物之一。作为华东地区的重要水系和水源地,研究太湖环境质量的变化对改善太湖流域水生生态系统和提高沿岸居民身体健康具有重要意义。论文研究了太湖胥口湾水域表层水和沉积物的PAHs。结果显示,表层水和沉积物的PAHs总浓度分别为7.2~83 ng·L~(-1)和66~620ng·g~(-1)干重;年均值为29 ng·L~(-1)和218 ng·g~(-1)干重;年均毒性当量浓度为2.4 ng·L~(-1)和28 ng·g~(-1)干重。沉积物中的主要污染物为荧蒽、芘和,影响毒性当量浓度的主要是苯并(a)芘和二苯并(a,h)蒽。4环PAHs在沉积物中占主要,其浓度百分比为44%~48%,而5环PAHs则占毒性当量总浓度的90%以上,说明其危害主要来自5环PAHs。PAHs特征化合物比值分析表明,胥口湾沉积物中PAHs主要来源于煤和木材燃烧,表层水大部分为燃烧和石油的混合来源。污染水平的时空变化特点为丰水期(8月)表层水PAHs浓度偏高,沉积物偏低。湖区和湖岸的PAHs浓度只在丰水期有显著差异,表层水PAHs浓度湖区高于湖岸,沉积物相反;其他时期湖区和湖岸PAHs浓度无显著差异。根据加拿大沉积物环境质量标准,胥口湾整体生态风险水平较低。从时空分布特征来看,个别生态风险较高的点主要分布在湖岸,5月平水期可能是沉积物中PAHs生态风险较高的频发期。  相似文献   

9.
采用高效液相色谱技术(HPLC)对徐州市大气颗粒物中优控的16种多环芳烃(PAHs)进行定量研究。结果表明:萘、芴、苊等低分子量芳烃的含量相对较低;苯并(g,h,i)苝、茚并(1,2,3-cd)芘、苯并(k)荧蒽、苯并(a)芘等高分子量芳烃的含量相对较高;含量最高的单体为荧蒽,占待检的16种PAHs的19%以上。不同环数多环芳烃含量大小顺序为:4环〉5环〉6环〉3环〉2环。可吸入颗粒物(PM10)中苯并(a)芘和∑PAHs在不同功能区的分布特征大体上一致,并呈现一定规律性:交通干线区〉工业区〉风景文化区〉居民区〉新城区。由此可以初步认为徐州市区PM10中的PAHs主要来源于燃煤和汽车尾气。  相似文献   

10.
The spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River, Harbin, China, were investigated. Seventy-seven samples, 42 water and 35 sediment samples, were collected in April and October of 2007 and January of 2008. The concentrations of total PAHs in water ranged from 163.54 to 2,746.25 ng/L with the average value of 934.62 ng/L, which were predominated by 2- and 3-ring PAHs. The concentrations of total 16 PAHs in sediment ranged from 68.25 to 654.15 ng/g dw with the average value of 234.15 ng/g dw, which were predominated by 4-, 5- and 6-ring PAHs. Statistical analysis of the PAH concentrations shown that the highest concentrations of the total PAHs were found during rainy season (October of 2007) and the lowest during snowy season (January of 2008). Ratios of specific PAH compounds, including fluoranthene/(fluoranthene + pyrene) (Flu/(Flu + Pyr)) and phenanthrene/(phenanthrene + anthracene) (An/(Ant + PhA)), were calculated to evaluate the possible sources of PAH contaminations. These ratios reflected pyrolytic inputs of PAHs in Songhua River water and a mixed pattern of pyrolytic and petrogenic inputs of PAHs in the Songhua River sediments. Ecotoxicological risk levels calculated for PAHs suggested that there were individual PAHs, which can less frequently cause biological impairment in some samples, but no samples had constituents that may frequently cause biological impairment. Total toxic benzo[a]pyrene equivalent of ΣcPAHs varied from 10.03 to 29.7 ng/g dw and from 0.36 to 1.92 ng/g dw for total toxic tetrachlorodibenzo-p-dioxin equivalent. The level of PAHs indicated a low toxicological risk to this area.  相似文献   

11.
Lake Temsah is one of the main wetlands in the Suez Canal region, and the main source for fish for the area. The lake is the end-point of several wastewater effluents. In the present study, residues of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyl (PCB) and polycyclic aromatic hydrocarbons (PAH) were monitored in the sediment of the lake. Samples were collected from six different sampling stations around the lake using a box-corer sampler, then kept frozen. Samples were extracted and cleaned up before residue determination was conducted using an HRGC/HRMS. An HP 6890 plus gas chromatograph was coupled to a Micromass Autospec Ultima mass spectrometer operating in EI mode at 35 eV and with a resolution of 10.000 (5% valley). PCDDs and PCDFs were detected in all sediment samples collected from various sampling stations. Results showed some progressive increase in PCDDs concentrations relevant to increase in chlorination. In the PCDD group of congeners, 1, 2, 3, 4, 6, 7, 8, 9 octa-CDD had the highest detected concentrations in all samples, while 2, 3, 7, 8 tetra-CDD showed the lowest concentrations. The World Health Organization toxicity equivalents ranged from 0.387 to 11.20 ng kg?1 d.w. For PCDD homologues, hexa-CDD was the most dominant homologue in all sediment samples analysed. Regarding dioxin-like PCBs, results showed that IUPAC No. 118 congener, 2, 3, 4, 4, 5, pentachlorobiphenyl was the most concentrated of all detected congeners, with concentrations ranging between 0.039 and 43.201 µg kg?1. For polycyclic aromatic hydrocarbons, benzo(b+k+j)fluoranthene had the highest concentrations in almost all sampling stations. However, fluorene was the smallest detected concentration in almost all stations. This result would indicate that PAH contamination of the lake seems to be coming from one main source in all sampling stations. The present work is the first record of PCCDs, PCCFs, and dioxin-like PCBs in the Temsah lake. The concentrations of the contaminants monitored in this study, especially those of PAHs, are rather alarming. Efforts should be made to stop point sources that contaminate the lake.  相似文献   

12.
The biodegradation of the five ring PAH benzo[a]pyrene (BaP) is assumed to be limited by the low water solubility of this compound. A mixed culture of microorganisms — isolated from a PAH-contaminated soil — was able to degrade14C labelled BaP in mineral medium by cometabolism with phenanthrene, fluoranthene, anthracene and pyrene as sources of carbon and energy. The mineralisation of these compounds to low levels resulted in an inhibition of the degradation of BaP. After the new addition of the four PAH compounds to the culture medium the mineralisation of BaP started again. A non-ionic surfactant of the alkylpolyglycoside type (Plantacare 2000 UP) increased the concentration of BaP in the culture medium because of solubilization. At high Plantacare concentrations, the degradation of BaP was completely inhibited above the critical micelle concentration (cmc). The degradation of the three and four ring PAHs was also inhibited. If the surfactant was metabolised to concentrations below the cmc, an increase of mineralisation of BaP could occur up to 24% in 384 days.  相似文献   

13.
宣威煤燃烧排放产物与其所导致的肺癌高发率一直是国际学术界关注的热点,但煤燃烧排放颗粒物中的关键致毒组分还不清楚。以肺癌高发区产出的晚二叠世C1煤燃烧排放不同粒径颗粒物为研究对象,分析其中主要有害有机污染物多环芳烃(PAHs)的分布特征及其健康风险。结果表明宣威煤燃烧排放的颗粒物中16种PAHs的总质量浓度为77 359.21 ng·m-3,其中含量最高的是苯并(g,h,i)苝,其他主要的PAHs依此为:屈、苯并(b)荧蒽、苯并(a)蒽、荧蒽、二苯并(a,h)蒽、菲、苯并(k)荧蒽、茚并(1,2,3-cd)芘;强致癌化合物苯并a芘(Ba P)总浓度亦可达到10 060.13 ng·m-3;这些有害有机物主要分布在细颗粒物中;不同粒径颗粒物的毒性当量存在明显差异,细颗粒的毒性当量占可吸入颗粒物中PAHs总毒性当量的87.4%,远高于粗颗粒(12%)和超细颗粒物(0.4%)的毒性当量。  相似文献   

14.
Surface soils affected by forest fires from Igbanko mangrove forest in Nigeria were analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography–mass spectrometry (GC–MS). The total PAHs concentrations in the soils ranged from 63 to 188?µg?kg?1 dry weight (average: 108?µg?kg?1). The three predominant PAHs in the soils were naphthalene (Na), fluoranthene (Flu), and benzo(b)fluoranthene (BbF). Compared to the control sample (19?µg?kg?1), elevated PAHs concentrations were observed in the soils, an indication of some level of PAHs contamination. PAHs source diagnostic ratios of Flu/(Flu?+?Pyr) and Ant/(Ant?+?Phe) indicated that the PAHs have a pyrogenic origin which may have resulted from combustion of grass, wood, or coal. An assessment based on Canadian soil quality guidelines indicated that the studied locations do not pose any serious adverse risk on human health.  相似文献   

15.
The levels of 16 US Environmental Protection Agency polycyclic aromatic hydrocarbons (16 EPA PAHs) in Syrian olive oils have been determined. Forty-two samples including commercial extra virgin and virgin olive oils, and virgin olive oils from olive mills were analyzed. Only naphthalene (NAP) was detected in all olive oil samples under investigation. Among the studied 16 EPA PAHs, the highest maximum concentration was also observed for NAP (120 μg kg?1). Moreover, three samples exceeded the European Union (EU) maximum level of 2 μg kg?1 for benzo[a]pyrene (BaP) in oils and fats, and only one sample exceeded the EU maximum level of 10 μg kg?1 for the sum of benz[a]anthracene, chrysene, BaP, and benzo[b]fluoranthene (PAH4). The likely daily intakes of the total sum of 16 EPA PAHs, the sum of eight genotoxic PAHs, the sum of PAH4, the BaP, and the BaP equivalent through consumption of Syrian olive oils were estimated.  相似文献   

16.
Lake Temsah is one of the main wetlands in the Suez Canal region, and the main source for fish for the area. The lake is the end-point of several wastewater effluents. In the present study, residues of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyl (PCB) and polycyclic aromatic hydrocarbons (PAH) were monitored in the sediment of the lake. Samples were collected from six different sampling stations around the lake using a box-corer sampler, then kept frozen. Samples were extracted and cleaned up before residue determination was conducted using an HRGC/HRMS. An HP 6890 plus gas chromatograph was coupled to a Micromass Autospec Ultima mass spectrometer operating in EI mode at 35 eV and with a resolution of 10.000 (5% valley). PCDDs and PCDFs were detected in all sediment samples collected from various sampling stations. Results showed some progressive increase in PCDDs concentrations relevant to increase in chlorination. In the PCDD group of congeners, 1, 2, 3, 4, 6, 7, 8, 9 octa-CDD had the highest detected concentrations in all samples, while 2, 3, 7, 8 tetra-CDD showed the lowest concentrations. The World Health Organization toxicity equivalents ranged from 0.387 to 11.20 ng kg-1 d.w. For PCDD homologues, hexa-CDD was the most dominant homologue in all sediment samples analysed. Regarding dioxin-like PCBs, results showed that IUPAC No. 118 congener, 2, 3, 4, 4, 5, pentachlorobiphenyl was the most concentrated of all detected congeners, with concentrations ranging between 0.039 and 43.201 µg kg-1. For polycyclic aromatic hydrocarbons, benzo(b+k+j)fluoranthene had the highest concentrations in almost all sampling stations. However, fluorene was the smallest detected concentration in almost all stations. This result would indicate that PAH contamination of the lake seems to be coming from one main source in all sampling stations. The present work is the first record of PCCDs, PCCFs, and dioxin-like PCBs in the Temsah lake. The concentrations of the contaminants monitored in this study, especially those of PAHs, are rather alarming. Efforts should be made to stop point sources that contaminate the lake.  相似文献   

17.
In this work, the airborne particulate matter with an aerodynamic diameter less than 10 µm (PM10) was fractionated in a six-stage high-volume cascade impactor to identify particulate size distribution in Tehran atmosphere. The study was conducted at 15 sites located in the north, south, east, west, and central parts of Tehran in 2005. Air samples were analyzed for 16 polycyclic aromatic hydrocarbons (PAHs) by HPLC. The daily PM10 concentrations at the peak of traffic in roadside areas were found to be 106–560 µg m?3. The cumulated concentration sum of PAHs, based on 16 species, was found to have an average concentration of 380 ng m?3. Furthermore, it was found that more than 60% of PAHs belonged to the small particulate size range, having sizes of less than 0.49 µm, some containing benzo(ghi)perylene and indeno(123cd)pyrene (high molecular weight) with average concentrations of 8 and 6 ng m?3 and fluorene, phenanthrene, and fluoranthene (low molecular weight) with average concentrations of 14, 13, and 19 ng m?3, respectively. In addition, the results revealed that the lighter three- and four-ring PAH compounds were the most abundant pollutants in the air collected at all the sampling sites.  相似文献   

18.
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in four size fractions (<2, 2–20, 20–200, >200 μm) in soils at different depth from a heavily contaminated crude benzol production facility of a coking plant were determined using GC–MS. Vertically, elevated total PAHs concentrations were observed in the soils at 3.0–4.5 m (layer B) and 6.0–7.5 m (layer C), relatively lower at 1.5–3.0 m (layer A) and 10.5–12.0 m (layer D). At all sampling sites, the silt (2–20 μm) contained the highest PAHs concentration (ranged from 726 to 2,711 mg/kg). Despite the substantial change in PAHs concentrations in soils with different particle sizes and lithologies, PAHs composition was similarly dominated by 2–3 ring species (86.5–98.3 %), including acenaphthene, fluorene, and phenanthrene. For the contribution of PAHs mass in each fraction to the bulk soil, the 20–200 μm size fraction had the greatest accumulation of PAHs in loamy sand layers at 1.0–7.5 m, increasing with depth; while in deeper sand layer at 10.5–12.0 m, the >200 μm size fraction showed highest percentages and contributed 81 % of total PAHs mass. For individual PAH distribution, the 2–3 ring PAHs were highly concentrated in the small size fraction (<2 and 2–20 μm); the 4–6 ring PAHs showed the highest concentrations in the 2–20 μm size fraction, increasing with depth. The distribution of PAHs was primarily determined by the sorption on soil organic matter and the characteristics of PAHs. This research should have significant contribution to PAH migration study and remediation design for PAHs-contaminated sites.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were analysed in surface soil samples collected in 2001–2002 at an open urban area of Madrid. In order to obtain representative samples, three collection points at the site were chosen. The most abundant PAHs and PCBs were phenanthrene, fluorene, pyrene, chrysene and benzo[a]pyrene and hexa- and heptachlorinated PCBs, respectively. The sum of selected PAHs (13 compounds) and PCBs (15 congeners) averaged 1 and 0.1?µg?g?1, respectively. PCB levels in winter were 2–10 times higher than summer ones, while seasonal variation for most of PAHs were not observed. Good correlations among all PCBs were found. Five PAHs were also well correlated.  相似文献   

20.
Mining activities are among the major culprits of the wide occurrences of soil and water pollution by PAHs in coal district, which have resulted in ecological fragilities and health risk for local residents. Sixteen PAHs in multimedia environment from the Heshan coal district of Guangxi, South China, were measured, aiming to investigate the contamination level, distribution and possible sources and to estimate the potential health risks of PAHs. The average concentrations of 16 PAHs in the coal, coal gangue, soil, surface water and groundwater were 5114.56, 4551.10, 1280.12 ng g?1, 426.98 and 381.20 ng L?1, respectively. Additionally, higher soil and water PAH concentrations were detected in the vicinities of coal or coal gangue dump. Composition analysis, isomeric ratio, Pearson correlation analysis and principal component analysis were performed to diagnose the potential sources of PAHs in different environmental matrices, suggesting the dominant inputs of PAHs from coal/coal combustion and coal gangue in the soil and water. Soil and water guidelines and the incremental lifetime risk (ICLR) were used to assess the health risk, showing that soil and water were heavily contaminated by PAHs, and mean ICLRcoal/coal-gangue and mean ICLRsoil were both significantly higher than the acceptable levels (1 × 10?4), posing high potential carcinogenic risk to residents, especially coal workers. This study highlights the environmental pollution problems and public health concerns of coal mining, particularly the potential occupational health hazards of coal miners exposed in Heshan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号