首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.  相似文献   

2.
To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.  相似文献   

3.
Historically, headwater streams received limited protection and were subjected to extensive alteration from logging, farming, mining, and development activities. Despite these alterations, headwater streams provide essential ecological functions. This study examines proxy measures of biogeochemical function across a range of catchment alterations by tracking nutrient cycling (i.e., inputs, processing, and stream loading) with leaf litter fall, leaf litter decomposition, and water quality parameters. Nutrient input and processing remained highest in second growth forests (the least altered areas within the region), while recently altered locations transported higher loads of nutrients, sediments, and conductivity. Biogeochemical functional proxies of C and N input and processing significantly, positively correlated with rapid assessment results (Pearson coefficient = 0.67–0.81; P = 0.002–0.016). Additionally, stream loading equations demonstrate that N and P transport, sediment, and specific conductivity negatively correlated with rapid assessment scores (Pearson coefficient = 0.56–0.81; P = 0.002–0.048). The observed increase in stream loading with lower rapid assessment scores indicates that catchment alterations impact stream chemistry and that rapid assessments provide useful proxy measures of function in headwater ecosystems. Significant differences in nutrient processing, stream loading, water quality, and rapid assessment results were also observed between recently altered (e.g., mined) headwater streams and older forested catchments (Mann–Whitney U = 24; P = 0.01–0.024). Findings demonstrate that biogeochemical function is reduced in altered catchments, and rapid assessment scores respond to a combination of alteration type and recovery time. An analysis examining time and economic requirements of proxy measurements highlights the benefits of rapid assessment methods in evaluating biogeochemical functions.  相似文献   

4.
Sediment flushing may be effective in mitigating loss of reservoir storage due to siltation, but flushing must be controlled to limit the impact on the downstream environment. A reliable prediction of the environmental effects of sediment flushing is hindered by the limited scientific information currently available. Consequently, there may be some controversy as regards to management decisions, planning the work, and monitoring strategies. This paper summarizes the main results of a monitoring campaign on the stream below a small alpine hydropower reservoir subjected to annual flushing between 2006 and 2009. The removed sediment was essentially silt, and the suspended solid concentration (SSC) of the discharged water was controlled to alleviate downstream impact. Control was achieved through hydraulic regulation and mechanical digging, alternating daytime sediment evacuation, and nocturnal clear water release. The four operations lasted about two weeks each and had an average SSC of about 4 g L?1. Maximum values of SSC were generally kept below 10 g L?1. Downstream impact was quantified through sampling of fish fauna (brown trout) and macroinvertebrate in the final reach of the effluent stream. The benthic community was severely impaired by the flushing operations, but recovered to pre-flushing values in a few months. As expected, the impact on brown trout was heavier on juveniles. While data biasing due to fish removal and re-stocking cannot be ruled out, the fish community seems to have reached a state of equilibrium characterized by a lower density than was measured before the flushing operations.  相似文献   

5.
Riparian areas link aquatic and terrestrial habitats, supporting species-rich bird communities, which integrate both terrestrial and aquatic processes. For this reason, inclusion of riparian birds in stream bioassessment could add to the information currently provided by existing programs that monitor aquatic organisms. To assess if bird community metrics could indicate stream conditions, we sampled breeding birds in the riparian zone of 37 reaches in 5 streams draining watersheds representing a gradient of agricultural intensity in central Italy. As a more direct indicator of water quality, stream macroinvertebrates were also sampled for computation of the Italian Extended Biotic Index (IBE). An anthropogenic index was calculated within 1 km of sampled reaches based on satellite-derived land-use classifications. Predictive models of macroinvertebrate integrity based on land-use and avian metrics were compared using an information-theoretic approach (AIC). We also determined if stream quality related to the detection of riverine species. Apparent bird species diversity and richness peaked at intermediate levels of land-use modification, but increased with IBE values. Water quality did not relate to the detection of riverine species as a guild, but two species, the dipper Cinclus cinclus and the grey wagtail Motacilla cinerea, were only observed in reaches with the highest IBE values. Small-bodied insectivorous birds and arboreal species were detected more often in reaches with better water quality and in less modified landscapes. In contrast, larger and granivorous species were more common in disturbed reaches. According to the information-theoretic approach, the best model for predicting water quality included the anthropogenic index, bird species diversity, and an index summarizing the trophic structure of the bird community. We conclude that, in combination with landscape-level information, the diversity and trophic structure of riparian bird communities could serve as a rapid indicator of stream-dwelling macroinvertebrates and, therefore, degradation of in-stream biotic integrity.  相似文献   

6.
In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas (n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones (n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25–35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.  相似文献   

7.
Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R 2 = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.  相似文献   

8.
Identification of minimally disturbed reference sites is a critical step in developing precise and informative ecological indicators. We tested procedures to select reference sites, and quantified natural variation (inter-site and -annual variability) among reference conditions using a macroinvertebrate data set collected from 429 mediterranean-climate stream reaches in the San Francisco Bay Area, California (USA). We determined that a landscape GIS-based stressor screen followed by a local field-based stressor screen effectively identified least-disturbed reference sites that, based on NMS ordination results, supported different biological communities than sites identified with only landscape (GIS) or local (field) stressors. An examination of least-disturbed reference sites indicated that inter-site variability was strongly associated with stream hydrology (i.e., perennial vs. non-perennial flow) and annual precipitation, which highlights the need to control for such variation when developing biological indicators through natural gradient modeling or using unique biological indicators for both non-perennial and perennial streams. Metrics were more variable among non-perennial streams, indicating that additional modeling may be needed to develop precise biological indicators for non-perennial streams. Among 192 sites sampled two to six times over the 8-year study period, the biological community showed moderate inter-annual variability, with the 100 point index of biotic integrity scores varying from 0 to 51 points (mean = 11.5). Variance components analysis indicated that inter-annual variability explained only a fraction (5–18 %) of the total variation when compared against site-level variation; thus efforts to understand causes of natural variation between sites will produce more precise and accurate biological indicators.  相似文献   

9.
Continuing pressures from human activities have harmed the health of ocean ecosystems, particularly those near the coast. Current management practices that operate on one sector at a time have not resulted in healthy oceans that can sustainably provide the ecosystem services humans want and need. Now, adoption of ecosystem-based management (EBM) and coastal and marine spatial planning (CMSP) as foundational principles for ocean management in the United States should result in a more holistic approach. Recent marine biogeographical studies and benthic habitat mapping using satellite imagery, large-scale monitoring programs, ocean observation systems, acoustic and video techniques, landscape ecology, geographic information systems, integrated databases, and ecological modeling provide information that can support EBM, make CMSP ecologically meaningful, and contribute to planning for marine biodiversity conservation. Examples from coastal waters along the northeast coast of the United States from Delaware Bay to Passamaquoddy Bay, Maine, illustrate how benthic biogeography and bottom seascape diversity information is a useful lens through which to view EBM and CMSP in nearshore waters. The focus is on benthic communities, which are widely used in monitoring programs and are sensitive to many stresses from human activities.  相似文献   

10.
Wildlife incidents with aircraft cost the United States (U.S.) civil aviation industry >US$1.4 billion in estimated damages and loss of revenue from 1990 to 2009. Although terrestrial mammals represented only 2.3 % of wildlife incidents, damage to aircraft occurred in 59 % of mammal incidents. We examined mammal incidents (excluding bats) at all airports in the Federal Aviation Administration (FAA) National Wildlife Strike Database from 1990 to 2010 to characterize these incidents by airport type: Part-139 certified (certificated) and general aviation (GA). We also calculated relative hazard scores for species most frequently involved in incidents. We found certificated airports had more than twice as many incidents as GA airports. Incidents were most frequent in October (n = 215 of 1,764 total) at certificated airports and November (n = 111 of 741 total) at GA airports. Most (63.2 %) incidents at all airports (n = 1,523) occurred at night but the greatest incident rate occurred at dusk (177.3 incidents/hr). More incidents with damage (n = 1,594) occurred at GA airports (38.6 %) than certificated airports (19.0 %). Artiodactyla (even-toed ungulates) incidents incurred greatest (92.4 %) damage costs (n = 326; US$51.8 million) overall and mule deer (Odocoileus hemionus) was the most hazardous species. Overall, relative hazard score increased with increasing log body mass. Frequency of incidents was influenced by species relative seasonal abundance and behavior. We recommend airport wildlife officials evaluate the risks mammal species pose to aircraft based on the hazard information we provide and consider prioritizing management strategies that emphasize reducing their occurrence on airport property.  相似文献   

11.
Land use change and other human disturbances have significant impacts on physicochemical and biological conditions of stream systems. Meanwhile, linking these disturbances with hydrology and water quality conditions is challenged due to the lack of high-resolution datasets and the selection of modeling techniques that can adequately deal with the complex and nonlinear relationships of natural systems. This study addresses the above concerns by employing a watershed model to obtain stream flow and water quality data and fill a critical gap in data collection. The data were then used to estimate fish index of biological integrity (IBI) within the Saginaw Bay basin in Michigan. Three methods were used in connecting hydrology and water quality variables to fish measures including stepwise linear regression, partial least squares regression, and fuzzy logic. The IBI predictive model developed using fuzzy logic showed the best performance with the R 2 = 0.48. The variables that identified as most correlated to IBI were average annual flow, average annual organic phosphorus, average seasonal nitrite, average seasonal nitrate, and stream gradient. Next, the predictions were extended to pre-settlement (mid-1800s) land use and climate conditions. Results showed overall significantly higher IBI scores under the pre-settlement land use scenario for the entire watershed. However, at the fish sampling locations, there was no significant difference in IBI. Results also showed that including historical climate data have strong influences on stream flow and water quality measures that interactively affect stream health; therefore, should be considered in developing baseline ecological conditions.  相似文献   

12.
Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air–water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream’s thermal sensitivity. Both the regional and the stream-specific air–water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream’s thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.  相似文献   

13.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

14.
Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). “Success” was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program’s design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.  相似文献   

15.
We present here a method to integrate geologic, topographic, and land-cover data in a geographic information system to provide a fine-scale, spatially explicit prediction of sediment yield to support management applications. The method is fundamentally qualitative but can be quantified using preexisting sediment-yield data, where available, to verify predictions using other independent data sets. In the 674-km2 Sespe Creek watershed of southern California, 30 unique “geomorphic landscape units” (GLUs, defined by relatively homogenous areas of geology, hillslope gradient, and land cover) provide a framework for discriminating relative rates of sediment yield across this landscape. Field observations define three broad groupings of GLUs that are well-associated with types, relative magnitudes, and rates of erosion processes. These relative rates were then quantified using sediment-removal data from nearby debris basins, which allow relatively low-precision but robust calculations of both local and whole-watershed sediment yields, based on the key assumption that minimal sediment storage throughout most of the watershed supports near-equivalency of long-term rates of hillslope sediment production and watershed sediment yield. The accuracy of these calculations can be independently assessed using geologically inferred uplift rates and integrated suspended sediment measurements from mainstem Sespe Creek, which indicate watershed-averaged erosion rates between about 0.6–1.0 mm year?1 and corresponding sediment yields of about 2 × 103 t km?2 year?1. A spatially explicit representation of sediment production is particularly useful in a region where wildfires, rapid urban development, and the downstream delivery of upstream sediment loads are critical drivers of both geomorphic processes and land-use management.  相似文献   

16.
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.  相似文献   

17.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   

18.
The Southeastern United States is a global center of freshwater biotic diversity, but much of the regions aquatic biodiversity is at risk from stream degradation. Nonpoint pollution sources are responsible for 70% of that degradation, and controlling nonpoint pollution from agriculture, urbanization, and silviculture is considered critical to maintaining water quality and aquatic biodiversity in the Southeast. We used an ecological risk assessment framework to develop vulnerability models that can help policymakers and natural resource managers understand the impact of land cover changes on water quality in North Carolina. Additionally, we determined which landscape characteristics are most closely associated with macroinvertebrate community tolerance of stream degradation, and therefore with lower-quality water. The results will allow managers and policymakers to weigh the risks of management and policy decisions to a given watershed or set of watersheds, including whether streamside buffer protection zones are ecologically effective in achieving water quality standards. Regression analyses revealed that landscape variables explained up to 56.3% of the variability in benthic macroinvertebrate index scores. The resulting vulnerability models indicate that North Carolina watersheds with less forest cover are at most risk for degraded water quality and steam habitat conditions. The importance of forest cover, at both the watershed and riparian zone scale, in predicting macrobenthic invertebrate community assemblage varies by geographic region of the state.  相似文献   

19.
A landscape-level approach was applied to eight rural watersheds to assess the role that wetlands play in reducing phosphorus loading to surface waters in the Lake Champlain Basin. Variables summarizing various characteristics of wetlands within a watershed were calculated using a geographic information system and then compared to measured phosphorus loading through multiple regression analyses. The inclusion of a variable based on the area of riparian wetlands located along low- and medium-order streams in conjunction with the area of agricultural and nonwetland forested lands explained 88% of the variance in phosphorus loading to surface waters. The best fit model coefficients (Pload = 0.86Ag + 0.64For – 30Ripwet + 160) suggest that a hectare of riparian wetland may be many times more important in reducing phosphorus than an agricultural hectare is in producing phosphorus. These results provide additional support for the concept that protection of riparian wetlands is an important management strategy for controlling stream water quality in multiuse landscapes.  相似文献   

20.
ABSTRACT: Successful stream rehabilitation requires a shift from narrow analysis and management to integrated understanding of the links between human actions and changing river health. At study sites in the Puget Sound lowlands of western Washington State, landscape, hydrological, and biological conditions were evaluated for streams flowing through watersheds with varying levels of urban development. At all spatial scales, stream biological condition measured by the benthic index of biological integrity (B‐IBI) declined as impervious area increased. Impervious area alone, however, is a flawed surrogate of river health. Hydrologic metrics that reflect chronic altered streamflows, for example, provide a direct mechanistic link between the changes associated with urban development and declines in stream biological condition. These measures provide a more sensitive understanding of stream basin response to urban development than do treatment of each increment of impervious area equally. Land use in residential backyards adjacent to streams also heavily influences stream condition. Successful stream rehabilitation thus requires coordinated diagnosis of the causes of degradation and integrative management to treat the range of ecological stressors within each urban area, and it depends on remedies appropriate at scales from backyards to regional storm water systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号