首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
对上海市某综合型城市地下空间空气进行采样、监测,得到CO 2、TVOC、甲醛、微生物、PM 10、PM 2.5等6类污染物的特征分布,基于国内外不同的空气质量标准作分析比较。结果表明,该典型综合型地下空间的空气污染情况较普遍,其中甲醛、TVOC污染较为突出,平均浓度超标倍数分别为1.056倍、3.755倍;共发现9种潜在致病菌属,占总数的0.893%。地下空间污染物的累积与内部建筑的设计、装修、功能属性、空调系统等众多因素有关。  相似文献   

2.
Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people working in the mall, should be of health effect concern.  相似文献   

3.
Atmospheric visibility impairment has gained increasing concern as it is associated with the existence of a number of aerosols as well as common air pollutants and produces unfavorable conditions for observation, dispersion, and transportation. This study analyzed the atmospheric visibility data measured in urban and suburban Hong Kong (two selected stations) with respect to time-matched mass concentrations of common air pollutants including nitrogen dioxide (NO(2)), nitrogen monoxide (NO), respirable suspended particulates (PM(10)), sulfur dioxide (SO(2)), carbon monoxide (CO), and meteorological parameters including air temperature, relative humidity, and wind speed. No significant difference in atmospheric visibility was reported between the two measurement locations (p > or = 0.6, t test); and good atmospheric visibility was observed more frequently in summer and autumn than in winter and spring (p < 0.01, t test). It was also found that atmospheric visibility increased with temperature but decreased with the concentrations of SO(2), CO, PM(10), NO, and NO(2). The results showed that atmospheric visibility was season dependent and would have significant correlations with temperature, the mass concentrations of PM(10) and NO(2), and the air pollution index API (correlation coefficients mid R: R mid R: > or = 0.7, p < or = 0.0001, t test). Mathematical expressions catering to the seasonal variations of atmospheric visibility were thus proposed. By comparison, the proposed visibility prediction models were more accurate than some existing regional models. In addition to improving visibility prediction accuracy, this study would be useful for understanding the context of low atmospheric visibility, exploring possible remedial measures, and evaluating the impact of air pollution and atmospheric visibility impairment in this region.  相似文献   

4.
It is costly to sample all air pollutants of a general community. Air sampling should be conducted based on a practical assessment strategy and monitoring plan. In Hong Kong, the Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to grade workplace IAQ as 'Excellent' or 'Good' by measuring the levels of nine common indoor air pollutants, namely carbon dioxide (CO(2)), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO(2)), ozone (O(3)), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), and airborne bacteria count (ABC). Although average office IAQ performance has been improved since the implementation of this certification scheme, there are still resource issues and technical difficulties. To streamline the assessment of office IAQ performance, this study proposes a simple index of IAQ benchmarks formulated in compliance with the HKEPD requirements. In particular, three of the nine listed common air pollutants were selected as the 'representatives' for the overall satisfactory IAQ. Together with the assessment results of 422 Hong Kong air-conditioned offices, the index was evaluated in terms of test sensitivity, specificity and predictive values. Proved to be feasible to describe the IAQ of some air-conditioned offices, this IAQ index would be a useful tool for policymakers, building owners and professionals to quantify IAQ performance in offices and to make decisions on resources and manpower management for efficient mitigation actions.  相似文献   

5.
The main objective of the present investigation is to study the temporal and spatial variations of the quality of ambient air in the Kingdom of Bahrain. The non-parametric Kruskal-Wallis (KW) test showed significant spatial variations and interactions of spatial-temporal among five mobile monitoring stations for 11 air pollutants. The Mann Whitney (MW) test demonstrated the seasonality of spring over winter for the PM(10), PM(2.5), NO(2), CO and p-xylene, the seasonality of winter over spring for O(3), and no significant seasonal variation for NH(3), benzene, SO(2), toluene and H(2)S. It is concluded that emissions from automobile exhaust, industrial and developmental projects are responsible for the spatial air pollution, and that air temperature is the controlling factor for the seasonal variations.  相似文献   

6.
This study explored the use of satellite data to monitor carbon monoxide (CO) and particulate matter (PM) in Northern Thailand during the dry season when forest fires are known to be an important cause of air pollution. Satellite data, including Measurement of Pollution in the Troposphere (MOPITT) CO, Moderate Resolution Imaging Spectroradiometer aerosol optical depth (MODIS AOD), and MODIS fire hotspots, were analyzed with air pollution data measured at nine automatic air quality monitoring stations in the study area for February–April months of 2008–2010. The correlation analysis showed that daily CO and PM with size below 10 μm (PM10) were associated with the forest fire hotspot counts, especially in the rural areas with the maximum correlation coefficient (R) of 0.59 for CO and 0.65 for PM10. The correlations between MODIS AOD and PM10, between MOPITT CO and CO, and between MODIS AOD and MOPITT CO were also analyzed, confirming the association between these variables. Two forest fire episodes were selected, and the dispersion of pollution plumes was studied using the MOPITT CO total column and MODIS AOD data, together with the surface wind vectors. The results showed consistency between the plume dispersion, locations of dense hotspots, ground monitoring data, and prevalent winds. The satellite data were shown to be useful in monitoring the regional transport of forest fire plumes.  相似文献   

7.
Atmospheric pollutants from livestock operations influence air quality inside livestock buildings and the air exhausted from them. The climate that prevails inside the building affects human and animal health and welfare, as well as productivity, while emissions from the building contribute to environmental pollution. The aim of this study was to examine the variation of two climatic parameters (namely temperature and relative humidity) and the levels of particulate matter of different sizes (PM10-PM2.5-PM1), as well as the relationships between them, inside a typical Greek naturally ventilated livestock building that hosts mainly sheep. The concentration of particles was recorded during a 45-day period (27/11-10/1), while temperature and relative humidity were observed during an almost 1-year period. The analysis revealed that the variation of outdoor weather conditions significantly influenced the indoor environment, as temperature and relative humidity inside the building varied in accordance to the outside climate conditions. Temperature remained higher indoors than outdoors during the winter and extremely low values were not recorded inside the building. However, the tolerable relative humidity levels recommended by the International Commission of Agricultural Engineering (CIGR) were fulfilled only in 47% of the hours during the almost 1-year period that was examined. This fact indicates that although temperature was satisfactorily controlled, the control of relative humidity was deficient. The concentration of particulate matter was increased during the cold winter days due to poor ventilation. The maximum daily average value of PM10, PM2.5 and PM1 concentration equaled to 363, 61 and 30?μg/m(3) respectively. The concentration of the coarse particles was strongly influenced by the farming activities that were daily taking place in the building, the dust resuspension being considered as the dominant source. A significant part of the fine particles were secondary, which the production of could be attributed to an increase in relative humidity levels. It is concluded that measures have to be adopted in order to achieve sufficient ventilation and to reduce particulate matter levels.  相似文献   

8.
The Helsinki Metropolitan Area Council (YTV) is responsible for air quality monitoring in the Helsinki area. Air quality has been monitored periodically since the late 1950s. An automatic SO2 monitoring network was constructed in 1975 and TSP measurements were added in 1978. Since then the network has been expanded and currently five automatic multicomponent stations form the basis of the network monitoring SO2, NO, NO2, CO, PM10 and O3 concentrations. Manual TSP and PM10 measurements are also conducted. Mobile monitoring units are also being used as well as special measurement campaigns. The effects of air pollution on nature are studied in bioindicator monitoring. An air quality index is used in order to inform the public of the current air quality situation. Changes in air quality are reflected in monitoring strategy. SO2 concentrations have decreased in the past two decades. Annual averages in 1995 were at or below 5 µg/m3. Traffic is the major source for pollutants even though catalytic converters have lowered traffic emissions somewhat. The highest annual average NO2 concentration at an urban site was 49 µg/m3 in 1995, and there has been no clear change in NO2 levels. There has been a decreasing trend in CO concentrations. Maximum annual TSP and PM10 averages in 1995 were 92 and 32 µg/m3, respectively. The highest average lead concentration was 0.01 µg/m3. Elevated concentrations are experienced from time to time. During the spring daily TSP and PM10 concentrations can go up to around 300 and 150 µg/m3, respectively. This is caused by resuspension mainly due to street sanding. Also a major winter NO2 episode occurred in December 1995. The highest hourly NO2 concentrations reached 400 µg/m3.  相似文献   

9.
10.
采用2015—2017年秋、冬季江苏省环境空气质量监测数据,从空气质量优良(达标)率、首要污染物、主要污染物浓度分析空气质量现状及特点。结果表明,江苏省秋、冬季空气质量优良(达标)率在60%左右,其中沿海地区空气质量达标率最高(71.1%),西北地区达标率最差(52.2%)。污染日的首要污染物主要为PM 2.5,占比高达91.5%。ρ(PM2.5)/ρ(PM 10)存在地区差异,江苏西北地区扬尘源贡献较大,江苏南部地区的二次颗粒物贡献更明显。ρ(NO2)/ρ(SO2)逐年持续升高,表明大气污染类型从燃煤性污染转变为复合型污染。  相似文献   

11.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

12.
Determination of O3, NO2, SO2, CO and PM10 measured in Belgrade urban area   总被引:1,自引:0,他引:1  
O(3), NO(2), SO(2), CO and PM(10) concentrations, simultaneously determined for the first time in Belgrade urban area in the autumnal period of 2005, are presented. The obtained results display similar behaviour of SO(2), NO(2), CO, PM(10) opposite from that of O(3). The weekend effect was also investigated showing diminution of average daily concentrations of SO(2), NO(2), PM(10) and CO for 72, 40, 37 and 42% respectively, and increase of the average daily concentration of O(3) for 56%. Influence of meteorological conditions on observed concentration levels was studied, too. The observed influence of wind speed on the O(3) nightly concentration levels was analyzed pointing to the phenomena of O(3) transport during episodic measurements. To make an identification of possible pollution sources and analyse the influence of meteorological parameters on pollution levels, air back trajectories for high level concentrations episodes were calculated and analysed. A multivariate receptor modelling (Principal Component Analysis, Cluster Analysis) has been applied to a set of data in order to determine the contribution of different sources. It was found that the main principal components, extracted from the air pollution data, were related to gasoline combustion, oil combustion and ozone transport.  相似文献   

13.
We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.  相似文献   

14.
对上海市轨道交通与地面交通换乘场站局地环境空气质量进行了调查,结果表明,万体馆站空气污染较重,大气污染达到警戒水平,PM10及NO2超标频率及超标量较高。中山公园监测点PM10及CO超标较多。对照点张江高科点及静安点的环境空气质量相对较好,上海大气质量指数能够达到大气环境质量标准,污染物单因子超标轻微。在地面交通与轨道交通的换乘场站,集聚的机动车所排放的尾气,是造成该地区环境空气质量恶化的重要原因之一。  相似文献   

15.
The concentrations of criteria air pollutants such as CO, NOx (NO + NO2), SO2 and PM were measured in the period of May 2001 and April 2003 in the city of Bursa, Turkey. The average concentrations for this period were 1115±1600 μg/m3, 29±50 μg/m3, 51±24 μg/m3, 79±65 μg/m3, 40±35 μg/m3, 98±220 μg/m3, for CO, NO, NO2, NOx, SO2 and PM, respectively. Temporal changes in concentrations were analyzed using meteorological factors. Correlations among pollutant concentrations and meteorological parameters showed weak relations nearly in all data. Lower concentrations were observed in the summer months while higher concentrations were measured in the winter months. The increase in winter concentrations was probably due to residential heating. Pollutants were associated with each other in order to have information about their origin. NOx/SO2 ratio was also examined to bring out the source origin contributing on air pollution (i.e., traffic or stationary).  相似文献   

16.
根据2014年全年实时在线观测数据,分析了徐州睢宁地区大气细颗粒物(PM_(2.5))和气态污染物(包括SO_2、CO、NO_x、O_3)质量浓度的季节性变化特征。结合后向轨迹模型,分析不同气团对该地区大气污染浓度的影响。PM_(2.5)与O_3值在夏季最低,呈显著相关,表明夏季PM_(2.5)主要受控于本地大气光化学活性。在冬季,除O_3外,PM_(2.5)、SO_2、CO、NO_x值最高,且大气颗粒物主要以细粒子为主。O_3在春季最高,并与远程传输的气团且经过我国东部污染源密集地区相对应。高浓度的PM_(2.5)主要与冬季缓慢移动的气团相对应,这可能将PM_(2.5)及其气态前体物传输至该地区进而加重大气污染程度。  相似文献   

17.
应用阿克苏市国家基准站及2个环保局监测站2015年大风沙尘天气过程前后PM10浓度变化及其与污染源、NECP全球再分析资料、风、监测站周边环境等关系进行分析.结果表明,阿克苏市春季沙尘天气的首要污染物均为PM10,PM10的变化曲线呈正态分布,春季中度及以上污染日均出现在污染日当日或次日.造成阿克苏市沙尘天气污染源分本地型、外来型以及二者共同影响型三种.本地型沙尘污染强度取决于北风风速大小及强风持续时间,PM10浓度变化与风速呈正相关.而外来型污染多发生在本地型沙尘天气之后,"东灌"冷空气裹挟沙尘进入南疆盆地,造成地面加压,浮尘天气造成PM10浓度增大,并持续数天.总结出沙尘天气污染预警的几个必要条件,后续在地区环保局、县局监测站建立的情况下,为分析阿克苏地区"八县一市"污染物与气象因素的关系提供借鉴,同时为实际的空气质量预警提供参考.  相似文献   

18.
It is more and more recognised that an estimation of the exposure of the population to air pollutants is more relevant than the ambient air quality, since it gives a better indication of health risk. Outdoor workers in an urban region are generally of low income status and are exposed to higher levels of both indoor and outdoor air pollution. Hence respondents from this population subgroup have been selected for this study. Outdoor workers are divided into two categories, viz. traffic constables and casual outdoor workers like watchmen, roadside shopkeepers etc. Most of the respondents are from the lower income group. Each respondent is monitored for a continuous 48-hour period. The sampling frequency is once a week.The study region is situated in the north-west part of the Greater Mumbai Municipal Corporation. It can be classified as industrial cum residential area. The daily integrated exposure of the outdoor workers consists of two major micro-environments, viz. occupational and indoor residential.A personal air sampler was used along with a cyclone to measure levels of Respirable Particulate Matter (RPM). The cyclone has a 50% removal efficiency for particle diameter of 5 m. Paired samples of PM10 (ambient) and RPM (personal) were collected to establish the correlation between them. The average 24-hour integrated exposure to RPM was 322 g/m3 and exceeded the corresponding PM10 level observed at the nearest Ambient Air Quality Monitoring Station by a factor of 2.25. The 90% confidence interval for this exposure is 283–368 g/m3. This study clearly demonstrates that the daily integrated exposure and therefore the health risk of outdoor workers in an urban area is significantly more serious than that indicated by ambient air quality data.  相似文献   

19.
The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM??) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM?? recorded in the building during renovation action (ranging from 166 to 542 μg m?3) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m?3). Additionally, they were higher than the value of PM?? recorded in indoor environments from other studies. The composition of heavy metals in PM?? and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM?? in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously by relevant stakeholders within the university in order to ensure that the associated risks toward humans and indoor environment are eliminated, or where this is not feasible, minimized as far as possible.  相似文献   

20.
This paper presents an integrated exposure monitoring system, based on an expansion of existing air quality monitoring systems using dispersion modelling. The system allows: (1) identifying geographical areas whose inhabitants are most exposed to ambient pollution; (2) identifying how many people in an area are exposed to concentrations of pollution exceeding air quality guidelines; (3) describing the exposure of population subgroups (e.g. children); (4) planning pollution abatement measures and quantifying their effects; (5) establishing risk assessment and management programs, and (6) investigating the short- and long-term effects of both pollutants and pollution sources on public health. The effect of pollution is rarely very large and in order to discover it, exposure estimation must provide data that reflects both spatial and temporal variations. Estimates of pollution exposure are obtained using an integrated approach that combines results of measurements from monitoring programs with dispersion calculations. These values can serve as estimates for individual short-term or long-term exposure. The grouped data allows the expression of ambient pollution concentrations as the spatial distribution of estimates such as the mean or 98th percentile of such compounds as SO2, O3, NO2, PM10 and PM2.5. This integrated approach has been combined into a single software package, AirQUIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号