首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In all tanning technology operations wastes are generated. These reach the environment as residual waters, solid and liquid waste as well as atmospheric emissions and odours.

This study tests an alternative method to the traditional tanning method at an industrial level. The new method is based on tanning without float and by significantly increasing the temperature at the end of the tanning process. The properties of the leathers obtained using the two methods have been compared and the results indicate that those leathers have similar physical, chemical, and organoleptic properties. However, the differences existing from the environmental point of view are significant. It is not necessary to use clean water for this tanning. Moreover, there is a 75% reduction of the residual float, a 91% reduction of the chrome discharged, and a 94% reduction of the chlorides discharged. A financial assessment was carried out to demonstrate that the newly proposed system is 32% more economic than the traditional one.  相似文献   


2.
The ever-increasing attention to the environmental impact of leather industry has necessitated the development of enzyme-based processes as potent alternatives to pollution causing chemicals. In this study, a hair saving process is developed for dehairing of skins and hides using a bacterial alkaline protease preparation, completely eliminating the use of lime and sulfide. To evaluate the efficacy of the enzymatic process, comparative studies have been carried out with two controls; a conventional lime-sulfide process and enzyme-assisted process using commercial dehairing enzyme with reduced quantities of lime and sulfide. The developed process requires a shorter duration of 6h for complete dehairing of skins and hides than control groups and also, it avoids the use of silicate carriers since the enzymatic dehairing is carried out by dip method. Histological and scanning electron microscopic analyses of the dehaired pelts obtained from enzymatic process reveal complete removal of hair and epidermis with moderate opening up of fiber structure in both dermis and corium. Moreover, the collagen is not damaged and resulting in a leather of good quality. The developed process has resulted in a remarkable reduction of effluent load in terms of biochemical oxygen demand, chemical oxygen demand, total dissolved solids and total suspended solids. Physicochemical studies conclusively show that the leathers produced by enzymatic process are equivalent to or better than that obtained by control systems. Thus, the developed enzymatic process offers immense potential for greener mode of dehairing of skins and hides in leather industry coupled with environmental excellence.  相似文献   

3.
Accumulation of sulfur-containing compounds and their bacterial mediated reductions have led to the emission of pungent odors from stagnant water bodies. This study is focused on the contribution of inorganic sulfur compounds in the emission of hydrogen sulfide. The measured dissolved oxygen levels have demonstrated good negative correlations with the dissolved sulfide levels implying the oxygen deficiency is the key for the reduction of sulfate ion and sulfite ion to sulfide ion. Particularly, the dissolved molar fractions of sulfide from the total dissolved sulfur compounds (sulfates, sulfites and sulfides) have a very good correlation with the dissolved oxygen for the stagnant water bodies except the artificially aerated prawn farms. For the stagnant water bodies with significant correlations, linear regressions are reported for them to be utilized in estimating one component of the regression from the measurement of the other. The measured data were further utilized to estimate the levels of hydrogen sulfide gas. The pH of the water bodies has confined much of the dissolved sulfides in the form of bisulfide ion and they can be easily escaped to the atmosphere upon acidification due to industrial discharges and/or acidic precipitations. The estimated levels of hydrogen sulfide just above the water surface were plotted for the most polluted stagnant water body in Sri Lanka for the pH range of 5-10 and temperature range of 25-35 degrees C.  相似文献   

4.
Wang C  Pei Y 《Chemosphere》2012,88(10):1178-1183
This work investigated the characteristics and mechanisms of hydrogen sulfide adsorption by ferric and alum water treatment residuals (FARs) in solution. The results indicated that FARs had a high hydrogen sulfide adsorption capacity. pH 7 rather than higher pH (e.g. pH 8-10) was favorable for hydrogen sulfide removal. The Yan model fitted the breakthrough curves better than the Thomas model under varied pH values and concentrations. The Brunauer-Emmett-Teller surface area and the total pore volume of the FARs decreased after the adsorption of hydrogen sulfide. In particular, the volume of pores with a radius of 3-5 nm decreased, while the volume of pores with a radius of 2 nm increased. Therefore, it was inferred that new adsorption sites were generated during the adsorption process. The pH of the FARs increased greatly after adsorption. Moreover, differential scanning calorimetry analysis indicated that elemental sulfur was present in the FARs, while the derivative thermal gravimetry curves indicated the presence of sulfuric acid and sulfurous acid. These results indicated that both oxidization and ligand exchange contribute to the removal of hydrogen sulfide by FARs. Under anaerobic conditions, the maximum amount of hydrogen sulfide released was approximately 0.026 mg g(-1), which was less than 0.19% of the total amount adsorbed by the FARs. The hydrogen sulfide that was released may be re-adsorbed by the FARs and transformed into more stable mineral forms. Therefore, FARs are an excellent adsorbent for hydrogen sulfide.  相似文献   

5.
Tanning processes performed in drums consume large amounts of water and chemicals, most of which end up in the wastewater. This study explores an alternative approach at an industrial scale to the traditional pickle-chrome tanning method. The new method replaces formic and sulphuric acids with sulphonic aromatic acid. Because it is done without float, there is a sizeable reduction in the amount of added salt and chrome salt as well as an increase in temperatures at the end of the tanning process. From an environmental perspective, the new method offers important advantages. For instance, there is no float addition in the tannage. Also, there are reductions of 94% and 99%, respectively, in the discharge of chlorides and chrome, as well as a 75% reduction in the residual float. Our financial assessment demonstrated that the new method is 42% cheaper than a traditional approach.  相似文献   

6.
Kinetics and stoichiometry of aerobic chemical and biological sulfide oxidation in wastewater from sewer networks were studied. In this respect, the effects of temperature and pH were investigated in the ranges 10 to 20 degrees C and 5 to 9, respectively. The temperature dependency of sulfide oxidation kinetics was described using an Arrhenius relationship. The effect of pH on the rate of chemical sulfide oxidation is related to the dissociation of hydrogen sulfide (H2S) to hydrogen sulfide ion (HS(-)), with HS(-) being more readily oxidized than H2S. Biological sulfide oxidation exhibited the highest rates at ambient wastewater pH, and the reaction was inhibited at both low and high pH values. Chemical sulfide oxidation was found to produce thiosulfate and sulfate, while elemental sulfur was the main product of biological sulfide oxidation. Based on the investigations, general rate equations and stoichiometric constants were determined, enabling the processes to be incorporated to conceptual sewer process models.  相似文献   

7.
The body of information presented in this paper is directed to the operating personnel and process engineers employed in the power and recovery departments of a chemical pulping operation. The proper evaluation of the total analytical and sampling system (TASS), to be used in the determination of sulfur oxides is as important as a proper analytical and recording system (ARS). The presence of other sulfur gaseous compounds and particulates could greatly influence the results of the determination.

The analytical method employed determines sulfur dioxide and trioxide from an aliquot of the trapping solution, 3% hydrogen peroxide and 8 0% isopropyl alcohol respectively. The aliquot is titrated with barium perchlorate in the presence of Thorin indicator. The results of evaluating the method indicated negligible interference from the presence of hydrogen sulfide, mercaptans and nitrogen oxides. A blank correction of 15 parts per million (ppm) is recommended whenever 100 ppm of hydrogen sulfide or more are simultaneously present in the gas stream. Particulaies are shown to interfere either by addition or subtraction. Sulfate particulates that will add to the determination must be removed, but in doing so, care must be exerted to avoid surface-contacting conditions that promote reaction between carbonates and the sulfur oxides. The integrated method of sampling and analysis will permit determinations from a flue gas with sulfur oxides concentrations of 30 ppm and above. The relative standard deviation improves from 10% at 100 ppm SO2 to 2.6% at 1000 ppm SO2. In both cases, sulfides were present.  相似文献   

8.
Aspects of the core-shell model of nanoscale zero-valent iron (nZVI) and their environmental implications were examined in this work. The structure and elemental distribution of nZVI were characterized by X-ray energy-dispersive spectroscopy (XEDS) with nanometer-scale spatial resolution in an aberration-corrected scanning transmission electron microscope (STEM). The analysis provides unequivocal evidence of a layered structure of nZVI consisting of a metallic iron core encapsulated by a thin amorphous oxide shell. Three aqueous environmental contaminants, namely Hg(II), Zn(II) and hydrogen sulfide, were studied to probe the reactive properties and the surface chemistry of nZVI. High-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the reacted particles indicated that Hg(II) was sequestrated via chemical reduction to elemental mercury. On the other hand, Zn(II) removal was achieved via sorption to the iron oxide shell followed by zinc hydroxide precipitation. Hydrogen sulfide was immobilized on the nZVI surface as disulfide (S(2)(2-)) and monosulfide (S(2-)) species. Their relative abundance in the final products suggests that the retention of hydrogen sulfide occurs via reactions with the oxide shell to form iron sulfide (FeS) and subsequent conversion to iron disulfide (FeS(2)). The results presented herein highlight the multiple reactive pathways permissible with nZVI owing to its two functional constituents. The core-shell structure imparts nZVI with manifold functional properties previously unexamined and grants the material with potentially new applications.  相似文献   

9.
Biofilters are becoming an increasingly popular treatment device for odors and other volatiles found at wastewater treatment plants. A seashell media based biofilter was installed in April 2011 at Lake Wildwood Wastewater Treatment Plant located in Penn Valley, California. It was sampled seasonally to examine its ability to treat odorous compounds found in the air above the anaerobic equalization basin at the front end of the plant and to examine the properties of the biofilter and its recirculating water system. The odor profile method sensory panels found mainly sulfide odors (rotten eggs and rotten vegetable) and some fecal odors. This proved to be a useful guidance tool for selecting the required types of chemical sampling. The predominant odorous compounds found were hydrogen sulfide, methyl mercaptan and dimethyl sulfide. These compounds were effectively removed by the biofilter at greater than 99% removal efficiency therein reducing the chemical concentrations to below their odor thresholds. Aldehydes found in the biofilter were below odor thresholds but served as indicators of biological activity. Gas chromatography with mass spectrometry and gas chromatography with sensory detection showed the presence of dimethyl disulfide and dimethyl trisulfide as well, but barely above their respective odor thresholds. The neutrality of the pH of the recirculating water was variable depending on conditions in the biofilter, but a local neutral pH was found in the shells themselves. Other measurements of the recirculating water indicated that the majority of the bio-activity takes place in the first stage of the biofilter. All measurements performed suggest that this seashell biofilter is successful at removing odors found at Lake Wildwood. This study is an initial examination into the mechanism of the removal of odorous compounds in a seashell biofilter.

Implications:?This paper presents a thorough examination of a seashell media biofilter, a sustainable treatment technology used to remove reduced sulfide compounds. The durable performance of the seashell biofilter ensures that odors will be adequately controlled, preventing odor nuisance to surrounding residences, which is an emerging problem faced by waste management facilities. The odor profile method technique used in this study can be applied in many situations by waste management facilities and regulatory air management organizations for source tracking in relation to prevention and management of odor complaints, respectively.  相似文献   

10.
Packing material formulation for odorous emission biofiltration   总被引:1,自引:0,他引:1  
In biological gas treatment, like biofiltration of volatile organic compounds or odorous substances, the microbial nutritional needs could be a key factor of the process. The aim of this work is to propose a new packing material able to provide the lacking nutrients. In the first part of this study, two kinds of material composed of calcium carbonate, an organic binder and two different nitrogen sources, ammonium phosphate and urea phosphate (UP), were compared. The new supports present bulk densities between 0.88 and 1.15g cm(-3), moisture retention capacities close to 50% and 70%, and water cohesion capacities greater than six months for the material with 20% binder. In the second part, oxygen consumption measurements in liquid experiments show that these packing materials could enhance bacterial growth compared to pine bark or pozzolan and have no inhibitory effect. The biodegradation of different substrates (sodium sulfide and ammonia) and the support colonization by the biomass were evaluated. Finally, UP 20 was chosen and tested in a hydrogen sulfide or ammoniac biofiltration process. This showed that, for H2S concentrations greater than 100mg m(-3), UP 20 has a real advantage over pine bark or pozzolan.  相似文献   

11.
The lead acetate paper tape reagent method for the estimation of hydrogen sulfide in air has been reviewed with the conclusions that the colored spots on which the quantitative estimation is based are not stable and do not lend by themselves to accurate results. Although it may be retained for grab sampling work, the lead acetate paper tape reagent is not acceptable as a stoichiometric reagent in any case where long duration sampling periods are concerned like in air pollution studies. A new mercuric chloride paper tape reagent has been developed as a substitute. Due to the fact that the colored spots resulting from the action of hydrogen sulfide on mercuric chloride are sensitive and very stablet, this new paper tape reagent is proposed as an adequate and reliable analytical too for the estimation of hydrogen sulfide in air. Also, a more comprehensive application of the paper tape analytical system is proposed throughout a suitable control of the factor tape retention capacity vs sampling rate which imposes some restrictions in the selection of the practical working range of concentrations. Nevertheless this working range is still wide enough to encompass all the hydrogen sulfide concentrations normally encountered in the city atmosphere.  相似文献   

12.
The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.  相似文献   

13.
Removal of insoluble heavy metal sulfides from water   总被引:1,自引:0,他引:1  
Banfalvi G 《Chemosphere》2006,63(7):1231-1234
The necessity of heavy metal removal from wastewater has led to increasing interest in absorbents. We have developed a new approach to obtain high metal adsorption capacity by precipitating metal sulfides with sodium sulfide on the surface of bentonite and adhere them to the absorbent. This method allowed to remove approximately 90% of cadmium as CdS from 10(-4)-10(-6) M CdCl2 solutions. Additional reactions are related to the removal of excess sodium sulfide by the release of hydrogen sulfide and oxidation to sulfur using carbogen gas (5% CO2, 95% O2) followed by aeration.  相似文献   

14.
Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.  相似文献   

15.
Ko TH  Chu H  Tseng JJ 《Chemosphere》2006,64(6):881-891
In this study, seven natural soils were tested for the sorption of hydrogen sulfide from coal gasification gas at high temperature. Results indicate that the LP natural soil has the best performance and the highest sulfur sorption capacity. After extracting free iron oxides, most natural soils have no sorption efficiency. The free iron oxides, therefore, proved to be the major components that react with hydrogen sulfide to form iron sulfides. The sulfur sorption capacity, either determined by EA or breakthrough time, is very close to the theoretical value based on the stoichiometric calculation with the content of free iron oxides. Moreover, the presence of CO is a positive effect while H2 is a negative effect. This can be explained via the water-shift reaction. On the basis of the results of temperature-programmed sulfidation (TPS), the starting temperature for the sorption of hydrogen sulfide is between 623-673 K. From the analyses of temperature-programmed oxidation (TPO) and XPS, the iron polysulfides are the major products and approximately 90% regeneration efficiency can be theoretically achieved while the temperature is controlled higher than 813 K. In the regeneration tests, the results show that the LP natural soil can be regenerated and thus reused after the oxidation process. No significant degeneration occurs on the LP natural soil after five sorption/regeneration cycles. The sulfur sorption capacity of the tenth regenerated soil can be achieved at least 80% compared to the fresh one. The experimental analyzed SO2 concentration from the regeneration process is almost identical to the theoretical calculated equilibrium concentration of the process. Maghemite is the main product after the regeneration process.  相似文献   

16.
Laboratory scale biological filter systems for control of hydrogen sulfide (H2S) in waste gas have been studied and the optimum design and operating parameters determined. Extensive tests have been conducted to evaluate the effect of various filter bed operating parameters such as temperature, retention time, H2S concentration, and H2S loading rate. Variable properties of new and used composts such as sulfate content, acidity, and water content have been studied for their influence on H2S removal efficiency. The effects of compost particle size distribution on system pressure drop and the maximum H2S elimination capacity were examined. Biofiltration systems containing various types of yard waste compost as the filter material have been observed to remove hydrogen sulfide with efficiencies greater than 99.9 percent for H2S inlet concentrations in the range from 5 to 2650 ppmv.  相似文献   

17.
生物过滤法是一种较新的空气污染控制方法 ,它利用微生物降解或 /转化空气中的挥发性有机物以及硫化氢、氨等恶臭物质。本文主要介绍生物过滤法处理废气的基本原理 ,讨论填料种类、湿度、pH、温度等影响生物过滤法性能参数。同时综述了生物过滤法的应用范围以及对生物过滤法的改进。  相似文献   

18.
Odor emission from livestock production systems is a major nuisance in many rural areas. This study aimed at determining the major airborne chemical compounds responsible for the unpleasant odor perceived in swine facilities during slurry handling, and at proposing predictive models of odor concentration (OC) based on the concentrations of specific odorants in the air. A multivariate data analysis strategy involving principal components analysis and multiple linear regressions was implemented to analyze the relationships between concentration of 35 gases (measured by GC/MS or gas detection tubes), and the overall OC perceived by sensory analysis. The study compiled data on the concentration of odor and odorants, measured in the headspace of 24 unstored and stored slurry samples collected from three different types of production units on 8 commercial swine farms. Among all the measured constituents, OC was found to have the highest correlation with the sulfur containing compounds (i.e. hydrogen sulfide, dimethylsulfide, dimethyldisulfide, dimethyltrisulfide). The concentration of hydrogen sulfide accounted for 68% of the variation in OC above the stirred slurry samples. The highest concentrations of volatile organic compounds were observed for phenols and indoles, which made a significant contribution to the overall OC when the slurry was fresh. The contribution of ammonia to the OC was only significant in the absence of hydrogen sulfide. The precision of predictive models of OC based on the concentration of specific odorants in the air was satisfactory (R2 between 0.66 and 0.89). Hence, this study suggests that monitoring of specific odor compounds released from agitated swine slurry can be used to predict the concentration of odor perceived close to the source (e.g. at storage units), allowing the assessment of odor nuisance potentials.  相似文献   

19.
The absorption of hydrogen sulfide and methyl mercaptan by aqueous solutions of chlorine, sodium hydroxide, and chlorine plus sodium hydroxide was studied using a two-inch diameter absorption column packed with ¼ inch Intalox saddles. Absorption rates were noticeably affected by chemical reactions occurring in the aqueous chlorine and hydroxide media. These solutions were studied as a means of controlling sulfur-containing gas emissions from kraft paper mills. The absorption studies indicated that aqueous chlorine solutions at a pH above 12 were effective absorbents for hydrogen sulfide removal in absorption equipment designed to tolerate sulfur in suspension. The absorption of methyl mercaptan in aqueous chlorine solutions appeared to be impractical since dimethyl disulfide was apparently the only product formed and was stripped from the tower by the gas stream. Sodium hydroxide solution was an effective absorbent for both methyl mercaptan and hydrogen sulfide when hydroxide to sulfide or mercaptan feed ratios were greater than 1 or 1.8, respectively. The mercaptan absorption coefficient was approximately twice that for sulfide absorption.  相似文献   

20.
Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations >3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations >4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide.
Implications:Information regarding air emissions from shale gas production is important given the recent increase in number of wells in various regions in the United States. Methane, the primary natural gas constituent, is a greenhouse gas; hydrogen sulfide, which can be present in gas condensate, is an odor-causing compound. This study surveyed wells representing one-third of the natural gas production volume in the Texas Barnett Shale and identified the percent of sites that warrant further study due to their fence line methane and hydrogen sulfide concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号