首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dutch National Monitoring Programme for Effectiveness of the Minerals Policy (LMM) was initiated to allow detection of a statutory reduction in nitrate leaching caused by a decreasing N load. The starting point, or baseline, was taken as the nitrate concentration of the upper metre of groundwater sampled on 99 farms in the 1992–1995 period in the sandy areas of the Netherlands, where predominantly grass and maize grow. We found here that a reduction in nitrate leaching of more than 20% in future would almost certainly be detected with the LMM. Detecting downward trends due to decreasing N load will require nitrate concentrations to also be related to soil drainage, precipitation excess leading to groundwater recharge and to location. Furthermore, we found that about 16% of the N load in the Dutch sandy regions was being leached to the upper metre of groundwater in the 1992–1995 period. The critical N load in approximately 1990 for exceeding the EC limit value for nitrate, NO3, (50 mg L–1) in the upper metre of groundwater for the mean situation for grassland, maize and arable land in the sandy area was found to be 210 kg ha–1 a–1. Because manure management has been altered, the critical load found will be lower than the current critical load .  相似文献   

2.
A combined semi-distributed hydrological model (CASCADE/QUESTOR) is used to evaluate the steady-state that may be achieved after changes in land-use or management and to explore what additional factors need to be considered in representing catchment processes. Two rural headwater catchments of the River Derwent (North Yorkshire, UK) were studied where significant change in land-use occurred in the 1990s and the early 2000s. Much larger increases in mean nitrate concentration (55%) were observed in the catchment with significant groundwater influence (Pickering Beck) compared with the surface water-dominated catchment (13% increase). The increases in Pickering Beck were considerably greater than could be explained by the model in terms of land-use change. Consequently, the study serves to focus attention on the long-term increases in nitrate concentration reported in major UK aquifers and the ongoing and chronic impact this trend is likely to be having on surface water concentrations. For river environments, where groundwater is a source, such trends will mask the impact of measures proposed to reduce the risk of nitrate leaching from agricultural land. Model estimates of within-channel losses account for 15–40% of nitrate entering rivers.  相似文献   

3.
Anthropogenic increase in atmospheric nitrogen (N) deposition in nature areas results in nitrate leaching to groundwater, threatening its quality. Member states of the European Union are obliged to reduce groundwater nitrate concentrations and to monitor this reduction. The relationship between N deposition and groundwater nitrate concentrations is quantified using a field survey and geographical information. Nitrate concentrations of the uppermost metre of groundwater in nature areas in the sandy regions in 1990 were related to geographical data by means of regression analysis. In this way nitrate concentrations could be explained by potential ammonia deposition, soil type, vegetation and land use. We found that about 35% of 54 kg ha(-1) a(-1) atmospheric N deposition was leached to the upper groundwater as nitrate, resulting in a mean NO3 concentration of about 30 mg L(-1). The critical N load for exceeding the EC limit value (50 mg L(-1)) in the sandy regions of The Netherlands composed of natural vegetation will be about 80 kg ha(-1) a(-1). Leaching is less than expected for nature areas but comparable with leaching of N surpluses in pastures in The Netherlands. A reduction in nitrate leaching by 25% or more can currently be detected via a new field survey.  相似文献   

4.
Most of the important factors causing differences in nutrient losses and their interaction were analysed in three small catchments that are located in partially different geographic and climatic conditions in Lithuania. The investigation revealed that climatic factors change the amount and pattern of water discharge over year (larger water discharge during winter in the catchment located closer to the sea), but nutrient leaching is more dependent on land use. Agricultural factors, such as larger cultivated area and excessive fertilisation in one catchment cause larger nitrogen losses (15 kg N ha–1 year–1). Large area of non-intensively used grassland leads to very small nitrogen losses (5.7 kg N ha–1 year–1) in another catchment. However, larger water discharge combined with loamy sandy soils leads to comparatively high nitrogen losses (12 kg N ha–1 year–1). The highest P losses (0.318 kg P ha–1 year–1) occurred in the catchment with hilly relief and clay soil texture. In summary, extensive agriculture in the post-Soviet countries has reduced the importance of agricultural activity for the extent of nutrient losses and agricultural factors (cultivation, fertilisation and livestock density) are responsible for the losses only in the region of sufficient agricultural activity (N input – 71.5 kg N ha–1, livestock density – 0.87 LU ha–1).  相似文献   

5.
The Catskill/Delaware reservoirs supply 90% of New York City’s drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication as an EPA document.  相似文献   

6.
A geographic information system was used to map and analyze nitrate, chloride, sulfate, and fluoride concentrations in 110 wells tapping the Woodbine Aquifer. The study area, covering ninecounties in north-central Texas, includes large percentages of both urban and agricultural land uses. Land use maps were compared with solute concentration data, and statistics were applied to detect associations between solutes, well depth, andland use. Anthropogenic sources such as fertilizer applications and natural sources such as gypsum, lignite, and clay deposits controlled nitrate, chloride, and sulfate concentrations, each inversely correlated with well depth. However, only one nitrate observation – from a shallow well in the aquifer's outcrop zone – surpassed the maximum contaminant level (MCL) of 44.3 mg L-1. By comparison, nearly half of the sulfate and several of the chloride observations surpassed the MCL of 250 mg L-1for each of those ions. Volcanic ash deposits influenced fluorideconcentrations, which directly correlated with well depth. There were no statistically significant associations between solute concentrations and land use. Low recharge rates and confining layers have mitigated anthropogenic impacts on solute levels in the aquifer.  相似文献   

7.
Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making  相似文献   

8.
In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO3 type in grass land to Ca·Na-Cl (+NO3) type and Na (Ca)-Cl (+NO3+SO4) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO3) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.  相似文献   

9.
Little is known about the importance of landscape and land cover to the implementation and performance of agricultural conservation projects designed to improve stream quality. In our study, we addressed the potential importance of landscape and land cover to conservation projects by measuring variation across 191 μ-basins (100–2400 ha) and integrating the observed variation into a study design aimed at determining the effectiveness of conservation projects. Our findings indicate that there are strong gradients across which landscape and land cover attributes vary. Land cover varied along a gradient of agricultural intensity, basin morphometry across gradients of stream closure and basin size, basin substrate was described by variation in drumlin formation, glacial landform type, and soil drainage, while agricultural conservation projects varied according to the level of project implementation. Correlation of these gradients found several associations between landscape and land cover, indicating that agricultural intensity was being constrained predominantly by drumlin formation and glacial landform type. Landscape and land cover did not appear to be determining factors in the implementation of conservation projects by land owners. Based on these findings we chose 32 μ-basins which represented the variability along each of the defined gradients for further study. We conclude that landscape scale variables demonstrate important variation and covariation that can and should be integrated into study designs for the assessment of streams and human activities affecting streams.  相似文献   

10.
An investigation was carried out to monitor Pb and Cd contamination in grazing land located near a highway. Environmental media at different distances fromhighway (soil, grass, water, cow's forage, fertilizer,manure and milk samples) were collected from three samplinglocations. Soil and grass were characterized by high metalmobility (soil with Pb: 5.25±0.71–14.59±1.17 mgkg-1, dry mass and Cd: 0.038–0.33±0.04 mg kg-1, dry mass and grass with Pb: 0.76±0.05–6.62±0.18 mg kg-1, dry mass and Cd: 0.17±0.01–0.73±0.09 mg kg-1, dry mass). One-way analysis of variane (ANOVA) was applied to find out the correlation between metal (total and bioavailable) concentrationsin the soil and the distance from roadside. In most cases, the finding showed that plants growing nearer to the highway are usually exposed to more heavy metal accumulations than those awayfrom the highway. In addition, a correlation was established between plant available metal concentrations and plant metaluptake concentrations.Analysis of fertilizer and manure showed considerable amountof metals (fertilizer with Pb: 1.53±0.06 mg kg-1 andCd: 0.038 mg kg-1 and manure with Pb: 2.55–3.34 mgkg-1 and Cd: 0.14–0.31 mg kg-1). Long termsimultaneous application of fertilizer and manure on thecommercial farm showed higher metal accumulation in the soiland plants than those of co-operative farm Considerableconcentrations of metals (Pb: 1.60–2.94 mg kg-1 andCd: 0.025–0.19 mg kg-1) were observed in fodder. The finding clearly demonstrated that there are seasonalvariation in total daily metal intake by individual cow (Pb:109.37 mg day-1 (dry), 273.47 mg day-1 (rainy) andCd: 2.02 mg day-1 (dry), 19.62 mg day-1 (rainy)).The provisional tolerable weekly intake of heavy metals incows is 390 g Pb and 28 g Cd per kg bodyweight in the rainy season and 156 g Pb and 2 gCd per kg body weight in the dry season. The levels of metals (Pb: 0.014 mg L-1 and Cd: not detectable) and bio-transferfactor (10-5–10-4) in raw milk were found to be well below the Codex Alimentarius Commissions Draft (1997). Ouranalysis revealed that improvements on farm management give significant reduction in elevated levels of Pb and Cdin soil and plants, and however leads to minimize the amountof Pb and Cd in consumed milk.  相似文献   

11.
Probability-based nitrate contamination map of groundwater in Kinmen   总被引:1,自引:0,他引:1  
Groundwater supplies over 50 % of drinking water in Kinmen. Approximately 16.8 % of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 ?-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate–N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate–N in residential well water using logistic regression (LR) model. A probability-based nitrate–N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate–N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7 %. The highest probability of nitrate–N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC–pH-probability curve of nitrate–N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate–N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate–N contamination zones.  相似文献   

12.
Nitrogen pollution in groundwater resulting from wastewater application to land is a common problem, and it causes a major threat to groundwater-based drinking water supplies. In this study, a numerical model is developed to study the nitrogen species transport and transformation in unsaturated porous media. Further, a new mass transfer module for dissolved oxygen (DO) is incorporated in the one-dimensional numerical model for nitrogen species transport to describe the fate and transport of nitrogen species, dissolved oxygen, dissolved organic carbon (DOC), and biomass. The spatial and temporal variation of dissolved oxygen is incorporated in the model through the mass transfer from gaseous phase to water phase in an unsaturated porous system. The numerical results of the water flow model and single species and multispecies transport model in an unsaturated zone developed for this purpose have been validated with the available analytical/numerical solution. The developed model is applied in clay loam, silt, and sand soils to analyze the transport behavior of nitrogen species under unsaturated condition. The numerical results suggest that the high rate of oxygen mass transfer from the air phase to the water phase positively increases the dissolved oxygen in the applied wastewater and enhances the nitrification process. Because of this high oxygen mass transfer, the nitrate nitrogen concentration significantly increases in the unsaturated zone and the same is transported to a larger depth at higher simulation period. On the other hand, the low rate of oxygen mass transfer implicitly enhances the denitrification process and finally reduces the nitrate nitrogen concentration in the unsaturated zone. The numerical results also show that the nitrate nitrogen transport is rapid in sandy soil when compared with clay loam and silty soils under high oxygen mass transfer rate. In essence, the high oxygen mass transfer rate significantly increases the nitrate nitrogen in the unsaturated zone, especially at a greater depth at larger time levels and eventually affects the groundwater quality.  相似文献   

13.
The aims of the present study were to: (1) investigate whether CORINE land cover classes reflect significant differences in floristic composition, using a very detailed CORINE land cover map (scale 1:5000); (2) decompose the relationships between floristic assemblages and three groups of explanatory variables (CORINE land cover classes, environmental characteristics and spatial structure) into unique and interactive components. Stratified sampling was used to select a set of 100-m(2) plots in each land cover class identified in the semi-natural wetland surrounding a lake in central Italy. The following six classes were considered: stable meadows, deciduous oak dominated woods, hygrophilous broadleaf dominated woods, heaths and shrublands, inland swamps, canals or watercourses. The relationship between land cover classes and floristic composition was tested using several statistical techniques in order to determine whether the results remained consistent with different procedures. The variation partitioning approach was applied to identify the relative importance of three groups of explanatory variables in relation to floristic variation. The most important predictor was land cover, which explained 20.7% of the variation in plant distribution, although the hypothesis that each land cover class could be associated with a particular floristic pattern was not verified. Multi Response Permutation Analysis did not indicate a strong floristic separability between land cover classes and only 9.5% of species showed a significant indicator value for a specific land cover class. We suggest that land cover classes linked with hygrophilous and herbaceous communities in a wetland may have floristic patterns that vary with fine scale and are not compatible with a land cover map.  相似文献   

14.
Temporal moments analysis of preferential solute transport in soils   总被引:1,自引:0,他引:1  
Temporal moments analysis of solute breakthrough curves is used to investigate the preferential leaching of chloride, nitrate and phosphate through an Australian soil. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and non-equilibrium between soil constituents, water and solutes. Therefore simple models are required to accurately characterise solute transport in natural and agricultural soils under non-equilibrium conditions. A multiple sample percolation system, consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of nutrients (NO3 , Cl, PO4 3 ) in the vadose zone of an agricultural soil predominantly dominated by clay. Using data collected from the multiple sample percolation experiments, this paper compares and contrasts the performance of temporal moments analysis with two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR) and a two-region preferential flow model (TRM) suitable for modelling preferential transport. The values for solute transport parameters predicted by temporal moments analysis were in excellent agreement with experimental data and results from ADR and TRM. It is concluded that temporal moments analysis when applied with other physical models such as the ADR and TRM, provide an excellent means of obtaining values for important solute transport parameters and gaining insight of preferential flow. These results have significant ramifications for modelling solute transport and predicting nutrient loadings.  相似文献   

15.
Shiyang River basin is located in Hexi Corridor, central-west Gansu province, northwest China. It is an area of typical arid to semiarid features. Based on the TM image of Liangzhou oasis and Minqin oasis in 1986 and 2000, this paper calculated and analyzed the changes of percentage and area of land use/cover types, and also have got the transformation matrix of the landscape mosaics. Dynamics of runoff and exploitation of groundwater, the most important factors influencing land use changes were also analyzed. The ratio of utilized water quantity in upper and middle reaches to that in lower reaches has increased largely from less than 2 before 1970 reached up to more than 8 since 1995; groundwater exploitation has developed progressively. As a result of overuse of groundwater, the groundwater table lowering obviously, the lowering rates reached up to 0.6–0.8 m/year in some place. In addition, the cropping patterns in study area were also distributed irrefficiently that if the planting percentage of water-wasting grain crops dropped to 50% in both oases, it could save irrigating water by 1.2×108 m3 in Liangzhou oasis and 0.2×108 m3 in Minqin oasis one year.  相似文献   

16.
Groundwater quality of Enugu metropolis comprising Achara Layout, Abakpa, and Emene settlement areas has been studied and characterized using multivariate statistical techniques. Three principal components (PCs) which explain 77.93 and 88.17 % were extracted at Achara Layout and Abakpa, respectively, while two PCs which explain 83.13 % were extracted at Emene. PC 1 of all the three areas reflects weathering of the host rock minerals and constitutes the dominant controlling process for all the areas. PC 2 of the three areas and PC 3 of Achara Layout and Abakpa can be attributed to both weathering/leaching of feldspathic minerals of host rocks (giving rise to alkaline earth metals in the groundwater) and anthropogenic activities. Cluster analysis defined groups of groundwater samples with similar hydrochemical characteristics. Two groups in Achara Layout and Emene fell into the high pollution loading class, while only one group in Abakpa fell into this class. The variation in the groundwater quality within each of the three areas may be explained in terms of groundwater flow directions, land use, and well depths. Discriminant analysis showed that the discriminating parameters of the groundwater quality of Achara Layout, Abakpa, and Emene are total dissolved solids, Na and Mg, and Cl, respectively. This study has revealed that the groundwater quality of the areas is controlled by both geogenic and anthropogenic processes and activities. The generated groundwater quality spatial variation models for each area will serve as a tool in the planning and development of groundwater in that region.  相似文献   

17.
Recognition and understanding of landscape dynamics as a historical legacy of disturbances are necessary for sustainable management of forest ecosystems. This study analyzed spatial and temporal changes in land use and land cover patterns in a typical mountain watershed in the Gumushane district along the Northeastern part of Turkey. The area is investigated by comparing LANDSAT images from 1987 to 2000 and evaluated the temporal changes of spatial structure of forest conditions through spatial analysis of forest cover type maps from 1971 and 1987 using GIS and FRAGSTATS™. The results show a general decreasing trend in area of natural land cover types including broadleaf and conifer forests as well as coppice between 1971 and 1987 (0.54%, respectively). In contrast, between 1987 and 2000 this natural land cover types show increasing trend (1.6%). In parallel with forest dynamics, the area of managed land including lowland and upland agricultural areas, rangelands and grasslands increased during the first period and decreased during second period. In terms of spatial configuration, Gümüşhane forests aren’t generally fragmented by intensive forest utilization in the latter periods. This is partially due to out-migration of rural population in Gümüşhane. Nevertheless, land use pattern significantly changed over time depending on a few factors such as unregulated management actions, social pressure and demographic movements. The study revealed that demographic movements have a major effect on landscape dynamics.  相似文献   

18.
The ecological water conveyance project (EWCP) in the lower reaches of the Tarim River provided a valuable opportunity to study hydro-ecological processes of desert riparian vegetation. Ecological effects of the EWCP were assessed at large spatial and temporal scales based on 13 years of monitoring data. This study analyzed the trends in hydrological processes and the ecological effects of the EWCP. The EWCP resulted in increased groundwater storage—expressed as a general rise in the groundwater table—and improved soil moisture conditions. The change of water conditions also directly affected vegetative cover and the phenology of herbs, trees, and shrubs. Vegetative cover of herbs was most closely correlated to groundwater depth at the last year-end (R?=?0.81), and trees and shrubs were most closely correlated to annual average groundwater depth (R?=?0.79 and 0.66, respectively). The Normalized Difference Vegetation Index (NDVI) responded to groundwater depth on a 1-year time lag. Although the EWCP improved the NDVI, the study area is still sparsely vegetated. The main limitation of the EWCP is that it can only preserve the survival of existing vegetation, but it does not effectively promote the reproduction and regeneration of natural vegetation.  相似文献   

19.
Unplanned urban expansion of the new urban cluster of Rosetta City, Egypt is reaching a critical stage. This unplanned expansion of slum areas threatens the land on which the high quality palm trees, by which Rosetta region is known, are cultivated. This research is concerned with studying the manner, rate, extent and impact of the expansion of the urban cluster of Rosetta City. A multi-temporal analysis of mainly the limits of the built up urban areas and their surrounding land cover is the main evaluation technique. By using Geographic Information Systems, it was possible to study the geographic base of the concerned area. An increase in area of the urban clusters of about 0.1 km2 occurred from 1917–1945, and a second increase of over 0.07 km2 occurred from 1945–1963. Just after the end of the Second World War, an abrupt increase took place in 1963–1993 that reached 1.7 km2. The majority of all the urban expansion was unplanned. By studying the topographic map of Rosetta city and the urban clusters on the western bank of the river Nile, it was found that most of the urban conglomeration of the city is located on relatively elevated land. The western part of the urban area is of an elevation varying around 5.0 m, and inclining with moderate slope towards the eastern edge of the city adjacent to the river Nile. The urban expansion on inclined land has caused severe problems with the sanitary drainage, as the city lacks any sanitary drainage systems. Sanitary drainage currently operates through precipitation trenches. Sanitary sewage gather beneath the ground forming continuos streams which reach the basements of many of the monuments present.  相似文献   

20.
The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号