首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phorate (O,O-diethyl S-ethylthiomethyl phosphorodithioate) dissolved in aqueous solution was almost completely decomposed by ozonation to form various species within 10 minutes of reaction time for the experimental conditions examined in this research. The generation rate of sulfate was found to be fairly independent of solution pH value. However, the formation of phosphate and carbonate was more favorable for alkaline solutions where hydroxyl free radical is the primary oxidative species. The reaction rates increased with initial gaseous ozone concentrations, indicating the reaction was mass transfer-controlled within the experimental range of this research. Combining the analytical results by various instruments, including gas chromatograph equipped with an electron ionization detector (GC-EID), high performance liquid chromatography (HPLC), ion chromatography (IC), and total organic carbon (TOC), the temporal sequence of phorate ozonation was proposed in this study. The oxidation of sulfur atoms on the phosphorus-sulfur double bond or carbon-sulfur-carbon bond by ozonation was found to occur at first to form sulfate and various intermediates.  相似文献   

2.
Both the advanced oxidation process (AOP) using a combination of hydrogen peroxide addition and microwave heating (H2O2/microwave), and the microwave heating process were used for solubilization of phosphorus from liquid dairy manure. About 80% of total phosphate was released into the solution at a microwave heating time of 5 min at 170 degrees C. With an addition of H2O2, more than 81% of total phosphate could be released over a reaction period of 49 h at ambient temperature. The AOP process could achieve up to 85% of total phosphate release at 120 degrees C. The results indicated that both the microwave, and the AOP processes could effectively release phosphate from liquid dairy manure. These processes could serve as pretreatments for phosphorus recovery from animal wastes, and could be combined with the struvite crystallization process to provide a new approach in treating animal wastes.  相似文献   

3.
Chang L  Chen IP  Lin SS 《Chemosphere》2005,58(4):485-492
It has been shown that the CeO2/gamma-Al2O3 catalyst is a feasible alternative to CeO2 for the catalytic wet air oxidation (CWAO) of phenol because it remains an effective catalyst and yet is cheaper to prepare. In this study, we found that the optimal cerium content in the CeO2/gamma-Al2O3 catalyst was 20 wt.%, regardless of catalyst loading. Furthermore, at 180 degrees C, with a phenol concentration of 1000 mg l(-1), and an O2 partial pressure of 1.0M Pa or 1.5M Pa, the optimal catalyst loading was 3.0 gl (-1). The efficacy of CWAO of phenol improved with O2 partial pressure, although the effects of O2 pressure were more significant between 0.5 MPa and 1.5 MPa than between 1.5 MPa and 2.0 MPa. After 2 h of reaction, approximately 100% phenol conversion and 80% total organic carbon (TOC) removal was recorded at 180 degrees C, 1000 mg l(-1) of phenol and 3.0 g l(-1) of catalyst. Because these percentages subsequently leveled off, it is suggested that 2 h is a suitable time over which to run the reaction. The efficacy of CWAO of phenol decreased as initial phenol concentration was raised (from 400 to 2500 mg l(-1)), with the exception of phenol conversion after about 2 h, for which 400 mg l(-1) produced the lowest phenol conversion figure. Higher phenol concentrations require both catalyst loading and O2 partial pressure to be increased to maintain high performance. For example, for 2000 mg l(-1) and 2500 mg l(-1) phenol, nearly 100% phenol conversion and 90% TOC removal after 4 h of reaction at 180 degrees C required 4.0 g l(-1) of catalyst and 2.0 MPa.  相似文献   

4.
The hydrodechlorination (HDCl) process of 2,3-, 2,4- and 2,5-dichlorobiphenyls was studied over a sulphided Ni-Mo/Al(2)O(3) catalyst in a stirred autoclave at a hydrogen pressure of 3 MPa. The catalysts were prepared by spray-drying. They were characterized by N(2) adsorption, thermogravimetry and scanning electron microscopy with X-ray microanalysis. The reaction temperature of the catalytic HDCl process was varied in the range of 230-290 degrees C. Polychlorinated biphenyls (PCBs) free transformer oil was used as reaction medium. The HDCl degree of dichlorobiphenyl isomers was in the range of 82-93%. The efficiency in the chlorine removal was found to be related to the position of the substituted chlorine atom and decreased as follows 2,4-dichlorobiphenyl approximately 2,5-dichlorobiphenyl>2,3-dichlorobiphenyl. For comparison, the HDCl process of 2,3-dichlorobiphenyl (2,3-PCB) without catalyst was also studied. The chlorine removal was 85% for the catalytic HDCl of 2,3-PCB whereas non-catalytic process led only to 16% of dechlorination in the same operating conditions, i.e. at 290 degrees C after 120 min. Monodichlorobiphenyls were not detected in the reaction products. The data for both catalytic and non-catalytic conversion of 2,3-PCB fit to a first-order model. Kinetic constants and the activation energy of the overall HDCl reaction of 2,3-PCB to biphenyl were evaluated. Compared to non-catalytic process, a nearly threefold decrease in the activation energy was observed in the presence of Ni-Mo/Al(2)O(3) catalyst prepared by spray-drying (48 kJ mol(-1) vs. 124 kJ mol(-1)).  相似文献   

5.
The absolute accuracy and long-term precision of atmospheric measurements hinge on the quality of the instrumentation and calibration standards. To assess the consistency of the ozone (O3) and nitrogen oxides (NO(x)) standards maintained at the National Institute of Standards and Technology (NIST), these standards were compared through the gas-phase titration of O3 with nitric oxide (NO). NO and O3 were monitored using chemiluminescence and UV absorption, respectively. Nitrogen dioxide (NO2) was monitored directly by laser-induced fluorescence and indirectly by catalytic conversion to NO, followed by chemiluminescence. The observed equivalent loss of both NO and O3 and the formation of NO2 in these experiments was within 1% on average over the range of 40-200 nmol mol(-1) of NO in excess O3, indicating that these instruments, when calibrated with the NIST O3 and NO standards and the NO2 permeation calibration system, are consistent to within 1% at tropospherically relevant mixing ratios of O3. Experiments conducted at higher initial NO mixing ratios or in excess NO are not in as good agreement. The largest discrepancies are associated with the chemiluminescence measurements. These results indicate the presence of systematic biases under these specific conditions. Prospects for improving these experiments are discussed.  相似文献   

6.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

7.
The objectives of this study were to determine the persistence of phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O, O-diethyl phosphorodithioate) and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) residues in fresh and baled alfalfa under field conditions. Plots of alfalfa were sprayed with each insecticide. Fresh alfalfa was sampled up to 20 days after treatment, and dried alfalfa was sampled up to 25 weeks after baling. Samples were analyzed for residues using high performance liquid chromatography (HPLC) equipped with a UV detector. The half-lives of diazinon and phosalone in fresh alfalfa were 1.8 and 3.3 days, respectively. In baled alfalfa the half-life of diazinon and phosalone were 2.8 and 16.7 weeks, respectively. No diazinon residues were detected in baled alfalfa, sampled after week 9, although the concentration of phosalone found at week 25 was 5.51 mg/kg.  相似文献   

8.
The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.  相似文献   

9.
Pandey S  Singh DK 《Chemosphere》2006,63(5):869-880
Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2 pyridyl phosphorothioate) 20 EC and Quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) 25 EC, were applied in groundnut (Arachis hypogaea L.) field as seed treatment at 25 ml/kg and soil treatment at 4 l/ha in 1998 and 1999. The residues of these insecticides were monitored during the entire crop season and their effect on the soil enzymes dehydrogenase, phosphomonoesterase and arginine deaminase were studied. Ninety nine percent of chlorpyrifos residues were dissipated within 60 days from seed treated soil and 98% dissipation was observed in soil treated field for the same days. Its half lives in seed treated soil were 8 days and 7 days and in soil treated field were 9.2 days in and 7.5 days in 1998 and 1999 respectively. Dissipation of quinalphos in comparison to chlorpyrifos was slow both in seed treated and soil treated field. Eighty seven percentage to 92% dissipation of quinalphos residues were observed from seed treated soil and 98% residues were dissipated from soil treated field within 75 days. Its half lives in seed treated soil were 20 days and 18 days and in soil treated field, its half lives were 13 days and 17 days 1998 and 1999 respectively. Inhibition in dehydrogenase activity followed by recovery was observed both in seed and soil treatments with chlorpyrifos. An inhibition of 17.2% was estimated after 60 days of seed treatment in comparison to control. Dehydrogenase activity was significantly reduced to 63% after 15 days of quinalphos seed treatment in comparison to control in 1998. Similar trends were observed in 1999. A significant inhibition in dehydrogenase activity was observed after soil treatment both in 1998 and 1999. Phosphomonoesterase activities were significantly inhibited upto 25.2% as compared to the control, on the 15th day of chlorpyrifos seed treatment in 1998 and similarly, after one day of treatment in 1999. Quinalphos inhibited the phosphomonoesterase activity till the end of the experimental period in the soil treated fields, whereas recovered within 30-60 days of treatment in the seed treated fields. Arginine deaminase activity was significantly stimulated within one day after chlorpyrifos seed and soil treatments in both years. The activity was almost threefold higher on the 30th and the 15th day of soil treatment in 1998 and 1999, respectively. A temporary inhibition of arginine deaminase activity was observed after quinalphos treatment. It was observed that in most of cases insecticides have temporary inhibitory effect on soil enzymes. However, inhibition was smaller in seed treated soil than in direct soil treatment.  相似文献   

10.
Lee Y  Jeong J  Lee C  Kim S  Yoon J 《Chemosphere》2003,51(9):901-912
The influence of various reaction parameters on herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) removal were examined in the photo/ferrioxalate/H(2)O(2) system, with regard to: (1) sulfate, phosphate, and z.rad;OH scavenger, as solution constituent; and (2) light intensity, ferrioxalate, H(2)O(2), and oxalate concentration, as operating parameter. In terms of 2,4-D removal, the photo/ferrioxalate/H(2)O(2) system has always been superior to the photo/Ferric ion/H(2)O(2) system, despite the high presence of anions (sulfate 100 mM, phosphate 1 mM) or z.rad;OH scavenger. Not only the rate of 2,4-D removal, but also the decomposition rate of H(2)O(2) and oxalate proportionally increase with light intensity. The ferrioxalate concentration determines the light absorption fraction, and thus, controls the rates of 2,4-D removal, and the decomposition of H(2)O(2) and oxalate, are predicted from kinetic formulations. The optimal concentration of H(2)O(2) and oxalate, according to the extent of the z.rad;OH scavenging reaction with these reagents, has been demonstrated for 2,4-D removal. It was found that an increasing oxalate concentration, which bears the burden of increased dissolved organic carbon (DOC), does not occur. This is because its decomposition, as a result of the photochemical reduction of the ferric oxalate complex, results in a decrease of the equivalent DOC. The importance of the key reaction factors to be considered, when applying this system to real wastewater treatment, is also discussed.  相似文献   

11.
Spring barley (Hordeum vulgare cv. Klaxon) plants, 9 days old, were exposed to 0.05, 0.10 or 0.15 microl litre(-1) ozone (O3) for 12 days. Fumigation was administered for 7 h between 9.00 h and 16.00 h each day. Using conventional IRGA equipment, the carbon dioxide exchange rate (CER) was shown to decrease with increasing concentration of O3 during the exposure period, falling to 60% of the control value at the highest O3 concentration. Transpiration rates and stomatal conductance showed similar trends. Light saturation curves, obtained using a leaf disc oxygen electrode, demonstrated that O3-treated leaves had lower apparent quantum yields (QY) and generally lower rates of O2 evolution at saturating light and CO2 levels. Oscillations in chlorophyll a fluorescence, normally observed in control plants, could not be detected after O3 treatment and could only be restored to some extent by feeding the phosphate sequestering agent D-mannose to the leaves.  相似文献   

12.

The objectives of this study were to determine the persistence of phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O, O-diethyl phosphorodithioate) and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) residues in fresh and baled alfalfa under field conditions. Plots of alfalfa were sprayed with each insecticide. Fresh alfalfa was sampled up to 20 days after treatment, and dried alfalfa was sampled up to 25 weeks after baling. Samples were analyzed for residues using high performance liquid chromatography (HPLC) equipped with a UV detector. The half-lives of diazinon and phosalone in fresh alfalfa were 1.8 and 3.3 days, respectively. In baled alfalfa the half-life of diazinon and phosalone were 2.8 and 16.7 weeks, respectively. No diazinon residues were detected in baled alfalfa, sampled after week 9, although the concentration of phosalone found at week 25 was 5.51 mg/kg.  相似文献   

13.
Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4(+), NO3(-), and NO2(-) nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4(+)-N in a 1-day sample, which continued until 90 days. Some declines in NO3(-)N were found from 15 to 60 days. Along with this decline, significant increases in NO2(-)N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3(-)N and the decline in NH4+NO2(-)-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4(+)-N, NO2(-)-N and nitrate reductase activity and some adverse effects on NO3(-)N between 15 and 90 days.  相似文献   

14.
Studies on the catalytic destruction of 1,2-dichlorobenzene were carried out on a specially constructed semi-technical equipment whose most important element was a catalytic reactor with a monolithic catalyst in the form of 150 x 150 x 100 mm cubes. A catalyst made from cordierite with an active layer composed of Al2O3 - 64 wt%, TiO2 - 26 wt%, V2O5 - 6.6 wt% and WO3 - 3.4 wt% was used. The reactor made it possible to carry out the process in the temperature range 150-350 degrees C, at variable catalyst loading and different velocities of gas flow through the reactor. The content of 1,2-dichlorobenzene in the air was analysed by a chromatographic method. A significant effect of catalyst loading and temperature on 1,2-dichlorobenzene destruction efficiency was observed and no effect of the linear flow velocity through the catalyst on o-dichlorobenzene destruction efficiency was reported. The applied vanadium-tungsten catalyst on a monolithic carrier made from TiO2/gamma-Al2O3 revealed very good activity that resulted in an over 80% efficiency of 1,2-dichlorobenzene destruction at the temperature around 250 degrees C at a very high catalyst loading reaching ca. 8200 h(-1). Additionally, in this study the kinetics of 1,2-dichlorobenzene decomposition was determined, specifying the order of reaction and dependence of the decomposition rate constant on temperature, using a simple power-rate law model.  相似文献   

15.
China has implemented a soil testing and fertilizer recommendation (STFR) program to reduce the over-usage of synthetic nitrogen (N) fertilizer on cereal crops since the late 1990 s. Using province scale datasets, we estimated an annual reduction rate of 2.5-5.1 kg N ha(-1) from 1998 to 2008 and improving grain yields, which were attributed to the balanced application of phosphate and potassium fertilization. Relative to the means for 1998-2000, the synthetic N fertilizer input and the corresponding N-induced N(2)O production in cereal crops were reduced by 22 ± 0.7 Tg N and 241 ± 4 Gg N(2)O-N in 2001-2008. Further investigation suggested that the N(2)O emission related to wheat and maize cultivation could be reduced by 32-43 Gg N(2)O-N per year in China (26%-41% of the emissions in 2008) if the STFR practice is implemented universally in the future.  相似文献   

16.
A study of the catalytic conversion of N2O to N2 over a bimetallic Ag-Pd catalyst is described in this article. Several Ag-Pd catalytic systems were prepared supported on Al2O3 with different ratios and their catalytic activity for the direct decomposition of N2O and their reduction with CO was measured. Based on the experimental results, it was observed that Ag-Pd bimetallic catalyst (5-0.5%) was the most active for both nitrous oxide reduction and direct decomposition. This high activity seems to be connected with a synergistic effect between Ag and Pd.  相似文献   

17.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

18.
采用O3、H2O2/O3及UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40min,溶液pH8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

19.
MicroRNA (miRNA) plays a crucial role in gene expression regulation. However, no data are available on change of miRNA expression of zebrafish (Danio rerio) after treatment with pesticides. We evaluated the effect of fipronil (5-amino-1-[2, 6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) and triazophos (3-(O, O-diethyl)-1-phenyl thiophosphoryl-1, 2, 4-triazol) and their mixture on miRNA expression in zebrafish. MiRNA expression profiles in zebrafish were altered after treatment with these chemicals. An association between these chemicals and the expression of 21 miRNAs was found 96 h after treatment. Among them, 14 miRNAs were differentially expressed due to the treatments with fipronil, triazophos and their mixture; 5 miRNAs showed altered expression level after treatment with formulations of these chemicals; miR-29b and miR-738 were differentially expressed after treatment with adjuvants. MiRNAs might present a novel toxicological response that could be used as a toxicological biomarker and have a different direction for future investigations of their association with miRNAs involved in chemical related diseases.  相似文献   

20.
Microwave-assisted solvent extraction (MASE) was investigated as an alternative for extraction of parathion (O,O-diethyl O-4-nitrophenyl phosphorothioate), methyl parathion (O,O-dimethyl O-4-nitrophenyl phosphorothioate), p,p'-DDE [1,1'-dichloro-2,2-bis(4-chlorophenyl)ethane], hexachlorobenzene (HCB), simazine (6-chloro-N2,N4-diethyl- 1 ,3,5-triazine-2,4-diamine) and paraquat dichoride (1,1'-dimethyl-4,4'-bipyridinium) from two different soils and from an earthworm-growing substrate. The matrices were fortified with 14C-radiolabeled pesticides and extracted with various solvent systems under different microwave conditions. Recoveries of more than 80% could be obtained depending on the used microwave conditions and solvent, except for paraquat whose recovery was generally less efficient. Thus, MASE can be successfully used to extract pesticides from environmental and biological samples and could be a viable alternative to conventional extraction methods. The technique uses smaller amounts of organic solvents, thereby minimizing the costs of the analysis and the disposal of waste solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号