首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Č. Lucu 《Marine Biology》1973,18(2):140-145
Influence of calcium on sodium fluxes was investigated in the brackish-water crab Carcinus mediterraneus Csrn., after activation of sodium regulatory mechanisms, during longterm acclimation in diluted (15.9 S) sea water. The 22Na outflux constants measured in whole crabs are noticeably lower (0.188 to 0.374h-1) in diluted sea water enriched by calcium (5.8 to 10.4 mM Ca2+/l), than in ordinary diluted sea water (0.545 h-1). The sodium-outflux constants in hemolymph, gills and muscle show the same trend of slower exchange of 22Na in calcium-enriched sea water. In ordinary sea water, the total sodium-outflux rate from the hemolymph amounts to 46.31 M Na/g/h, while in calcium-enriched sea water (8.23 mM Ca2+/l) it is inhibited, amounting to 13.86 M Na/g/h. Sodium and potassium concentrations of intracellular muscles in diluted sea water enriched with calcium and control diluted sea water are similar. The outflux of intracellular sodium from the muscle amounts to 2.84 M Na/g/h in crabs acclimated to diluted sea water.  相似文献   

2.
Nitrogen excretion rates of demersal macrozooplankton were measured together with nitrogen concentrations in the water column and sediments in lagoons of Heron Reef and One Tree Reef, Great Barrier Reef, Australia, during August and November 1991. Excretion rates increased with body weight, and weight-specific excretion rates of the demersal macrozooplankton were comparable to those of pelagic zooplankton and meiofauna in the Great Barrier Reef. Values of demersal macrozooplankton abundance from previous studies and excretion rates from this study were combined to estimate fluxes of ammonium from demersal macrozooplankton in coral reef lagoons. The estimated fluxes in the water column and sediments were 12 M NH4 m-2 d-1 and 34 M NH4 m-2d-1, respectively. These fluxes were compared with reported fluxes of ammonium in coral reef lagoons in the Great Barrier Reef, Australia. The estimated flux from the demersal macrozooplankton in the water column was 29 and 9% of those reported for microheterotroph regeneration and phytoplankton utilization, respectively. It was 10% of the reported advective flux during periods of low advection and 13% of the maximum efflux from sediments computed from diffusion models. The estimated flux from the demersal macrozooplankton in the sediments exceeded those reported for meiofauna, and was 5 to 32% and 2 to 13% of those reported for ammonification and utilization in sediments, respectively. The potential importance of demersal macrozooplankton in mediating sediment-water column exchanges in the absence of diffusive effluxes and when they swarm is discussed.  相似文献   

3.
Transbranchial potentials (TP) and sodium or chloride fluxes were measured in an apparatus designed for the simultaneous perfusion of eight isolated gills of Uca rapax. In anterior gills perfused with U. rapax–saline (US) the TP varied almost linearly from-7.5 to +10 mV inside, and in posterior gills from +2 to-8.5 mV (inside), on exposure to salinities ranging from 8.7 through 52, i.e. 25 to 150% seawater (100%=34.6 S). Sodium influx and efflux in anterior gills exposed to US, 8.7 or 43.3 S (0.7 to 4.0 mmol h–1 g–1 dry wt) were always greater than in posterior gills (0.5 mmol h–1). The chloride fluxes were slightly smaller than sodium fluxes in anterior gills, while in the posterior gills the chloride influx (2.8 to 4.6 mmol h–1) was always larger than chloride efflux (0.6 to 1.1 mmol h–1) or the sodium fluxes. At least three ion-transport mechanisms may be present in these gills: (1) an internal ( = basolateral), ouabain-sensitive Na+, K+ pump, restricted to anterior gills; (2) a furosemide-sensitive Na+, K+, 2Cl (plus water) transporter, apparently restricted to posterior gills, and (3) a Na+ exchanger (and possibly other as yet unidentified ion transporters, as suggested by large increases of the chloride influxes caused by amiloride), probably located on the apical membranes of the epithelial cells of both gill types. The differential selectivity of the gills of U. rapax for sodium or chloride may limit the transbranchial movements of either ion, without a reduction of the overall permeability of these crabs.Communicated by N.H. Marcus, Tallahassee  相似文献   

4.
In two spatially isolated species — North Sea Carcinus maenas L. and Adriatic Carcinus mediterraneus Czerniavsky —osmoconcentration in hemolymph and Na-transport were investigated. The experiments were performed on crabs which had been long-term acclimated to sea water (1190 mOsmol/l) and to 50% sea water, and on individuals immediately after transfer from sea water to 50% sea water, until new steadystate conditions had been reached. About 10 to 12 h after transfer, a new steady state of total osmoconcentration as well as of the concentrations of the most representative cations Na, K, Ca, and Mg was attained. The hemolymph contents of Na and total osmotically active substances of the North and Adriatic Sea populations are significantly different when they are long-term acclimated to sea water and to 50% sea water. Total sodium fluxes, as calculated from influx and outflux experiments, are in the range 12.1 to 15.2 M Na/g/h in both species when acclimated to sea water. In 50% sea water, sodium fluxes are retarded, especially in C. maenas (6.6 M Na/g/h). This value is significantly lower than the corresponding value in C. mediterraneus (11.4 M Na/g/h). Differences are discussed on the basis of adaptation of the populations to their different environments.  相似文献   

5.
Influences of salinity, Na, K, Ca and Mg on Na–K-ATPase activity in the posterior gills of Carcinus maenas (L.) have been investigated with respect to the role of the enzyme in hyperosmotic regulation. K and Mg ions were obligatory for enzyme activity. The dependence on the K concentration can be seen in a saturation curve of the Michaelis-Menten type. Low concentrations of Ca (0.2–3 mM) in the incubation medium strongly inhibited Na–K-ATPase activity. Activities inhibited by Ca could be reactivated to non-inhibited values by the addition of higher amounts of Mg (25 mM). Activity increased along with the salinity of the sea water used as incubation medium up to about 10 S. Here, maximum activity was observed. Further salinity increases of the incubating sea water were inhibitory. Salinity dependence is assumed to be based on Na dependence of the Na-pump. Comparative investigations of the Na–K-ATPase activity and its affinity to sodium in five species of decapod crustaceans indicated that levels of Na–K-ATPase differed in the posterior gills of stenohaline and euryhaline species. The results obtained confirm previous assumptions of a central role of the branchial Na–K-ATPase in hyperosmotic regulation. Properties of the Na–K-ATPase, such as affinity for substrates or dependence on ionic sea water constituents, are kept constant with respect to salinity changes. Modifications due to salinity only concern enzyme amounts especially in the posterior gills. The finding that the Na-pump is localized in basolateral parts of ion-transporting epithelial cells confirms the aforementioned results.  相似文献   

6.
This study presents the concentrations of about 50 metals and ions in 33 different brands of bottled waters on the Swedish market. Ten of the brands showed calcium (Ca) concentrations ≤10 mg L−1 and magnesium (Mg) levels <3 mg L−1, implying very soft waters. Three of these waters had in addition low concentrations of sodium (Na; <7 mg L−1), potassium (K; <3 mg L−1) and bicarbonate (HCO3 ≤31 mg L−1). These brands were collected from barren districts. Nine of the brands were collected from limestone regions. They showed increased Ca-levels exceeding 50 mg L−1 with a maximum of 289 mg L−1. Corresponding Mg-levels were also raised in two brands exceeding 90 mg L−1. Two soft and carbonated waters were supplemented with Na2CO3 and NaCl, resulting in high concentrations of Na (644 and 648 mg L−1) and chloride (Cl; 204 and 219 mg L−1). Such waters may make a substantial contribution to the daily intake of NaCl in high water consumers. The storage of carbonated drinking water in aluminum (Al) cans increased the Al-concentration to about 70 μg L−1. Conclusion As there was a large variation in the material as regards concentrations of macro-elements such as Ca, Mg, Na, K and Cl. Supplementation with salts, e.g., Na2CO3, K2 CO3 and NaCl, can lead to increased concentrations of Na, K and Cl, as well as decreased ratios of Ca/Na and larger ratios of Na/K. Water with high concentrations of e.g., Ca and Mg, may make a substantial contribution to the daily intake of these elements in high water consumers. Al cans are less suited for storage of carbonated waters, as the lowered pH-values may dissolve Al. The levels of potentially toxic metals in the studied brands were generally low.  相似文献   

7.
E. Meroz  M. Ilan 《Marine Biology》1995,122(3):453-459
A sensitive experimental protocol using cloned corals (hereafter microcolonies) of the branching scleractinian coral Stylophora pistillata and 45Ca has been developed to enable reproducible measurements of physiological and biochemical mechanisms involved in calcium transport and compartmentalization during coral calcification. Cloned S. pistillata microcolonies were propagated in the laboratory from small fragments of parent colonies collected in 1990 in the Gulf of Aqaba, Jordan. Cloned microcolonies have several intrinsic properties that help to reduce unwanted biological variability: (1) same genotype; (2) similar sizes and shapes; and (3) absence of macroscopic boring organisms. Errors specifically associated with long-standing problems to do with isotopic exchange were further reduced by producing microcolonies with no skeletal surfaces exposed to the radioisotope-labelled incubation medium. The value of the technique resides principally in its superior ability to elucidate transportation pathways and processes and not in its ability to quantitatively estimate calcium deposition by corals in nature. We describe here a rapidly exchangeable calcium pool in which up to 90% of the radioactive label taken up during incubations is located. This pool (72.9±1.4 nmol Ca mg-1 protein) is presumably located within the coelenteric cavity as suggested by the following: (1) it has 4-min half-time saturation kinetics; (2) the accumulation of calcium is linearly correlated with the calcium concentration of sea-water; and (3) its insensitivity to metabolic and ion transport inhibitors indicate that membranes do not isolate this compartment. Washout of this large extracellular pool greatly improved estimates of calcium deposition as evidenced by 10 to 40% reduction in coefficients of variation when compared with previous 45Ca2+ methods described in the literature. Comparisons of calcification measurements simultaneously carried out using the alkalinity anomaly technique and the 45Ca protocol described here show that the correlation coefficient of both techniques is close to 1. Unlike previous reports, our 45Ca2+-derived measurements are slightly lower than those computed from the alkalinity depletion technique.  相似文献   

8.
In the present work the effect of Hg2+ and Cu2+ on the level of cytosolic Ca2+ in mussel (Mytilus edulis L.) haemolymph cells were investigated by confocal microscopy and spectrofluorimetry utilizing the fluorescent dye Fluo3. In the blood cells of marine molluscs, exposure to Cu2+ and Hg2+ in the nanomolar and micromolar range causes a time-and concentration-dependent increase in the cytosolic Ca2+ level. Both the presence of a low-calcium containing medium and pretreatment of the cells with the channel blocker Verapamil greatly reduced the effects of higher (50 M) Hg2+ concentrations, this indicating that Hg2+ enhances the influx of extracellular Ca2+ partly through activation of voltage-dependent Ca2+ channels. Low concentrations of Hg2+ (1 M) and also of Cu2+ (0.5 M), an essential element, were able to induce a sustained increase in cytosolic Ca2+, which was not affected either by Verapamil pretreatment or by lowering the extracellular calcium concentration. These data indicate that in mussel haemocytes heavy metal cations impair Ca2+ homeostasis not only by affecting Ca2+ channels, but also by interfering with other mechanisms of calcium transport across cellular membranes, such as the Ca2+-ATPases. The resulting increase in cytosolic Ca2+ could activate Ca-dependent processes which may be involved in many of the biochemical and physiological alterations observed in the cells of metal-exposed mussels. Specimens used in these experiments were collected from the river Linker near Plymouth, U.K. in June 1991.  相似文献   

9.
Accumulation of waterborne cadmium in Littorina littorea, Mytilus edulis and Carcinus maenas (collected in 1988 and 1989 around the island of Funen, Denmark) was investigated in a matrix of salinities (10 to 30) and calcium concentrations (2.9 to 8.9 mM Ca++). Cadmium accumulation rates in soft parts of L. littorina, soft parts and shells of M. edulis and whole bodies and exoskeletons of C. maenas decreased with increasing salinity. Changes in the calcium concentrations accounted for 72% of the salinity effect on cadmium accumulation rates in L. littorina, whereas calcium concentrations had little or no effect on cadmium accumulation in M. edulis. Cadmium accumulation in the whole body of C. maenas was affected equally by calcium concentrations and total salinity, whereas accumulation in the exoskeleton was mainly affected by changes in total salinity. Individual variability in cadmium accumulation in the organs of C. maenas was greater than the variation attributable either to changes in ambient calcium concentrations or total salinity. An appreciable amount of the inter-individual variability in the cadmium accumulation in all three species was correlated with wet:dry weight ratios of the tissues and size of the organisms.  相似文献   

10.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

11.
R. Beiras  J. Widdows 《Marine Biology》1995,122(4):597-603
The acute and long-term effects of neurotransmitters dopamine (DA), serotonin (SE) and norepinephrine (NE) on the feeding rates of Mytilus edulis veliger larvae were investigated through concentration-response curves. Increasing DA concentrations increasingly inhibited food uptake. Acute exposure to high levels of DA caused long-term inhibitory effects on feeding rates (10–5 MDA) and growth rates (3x10–4 MDA). Feeding activity was also inversely related to NE concentration. SE concentrations between 10–8–3x10–7 M supported enhanced feeding rates. Neither NE nor SE showed long-term inhibitory effects on feeding at concentrations <10–4 M. These results were consistent with the observed effects of the different neurotransmitters on the swimming pattern of the larvae. The experimental evidence supports the model of ciliary control in adult mussels, involving dual innervation of the ciliated cells of the velum, with excitatory serotonergic and inhibitory dopaminergic fibers.  相似文献   

12.
The toxicity of copper and zinc to the estuarine copepod Acartia tonsa and to the two diatom food species Thalassiosira pseudonana and T. weissflogii was measured in nitrilotriacetate-trace metal ion buffer systems at 25 S. Overall, A. tonsa appeared to be more sensitive to cupric and zinc ion activity than either of the diatoms; however, its sensitivity varied among the different life stages examined. Adult survival was not affected within the zinc ion activity range 10-11 to 10-8 M and cupric ion activity range 10-13 to 10-11 M over a 96-h period, but a cupric ion activity of 10-10 M caused total mortality of adults within 72 h. Egg-laying rate was most sensitive to zinc, and was reduced at zinc ion activities 10-10 M. Naupliar survival after 96 h was reduced by zinc ion activities 10-8 M and by cupric ion activities 10-11 M, and was reduced to zero at a zinc ion activity of 10-7 M and at a cupric ion activity of 10-10.5 M. In an interspecies comparison of 96-h adult survival, Centropages typicus was more sensitive to copper and zinc than A. tonsa and the survival of Labidocera aestiva was dependent on the ratio of cupric to zinc ion activity. A comparison of our results with estimates of zinc and cupric ion activities in estuaries suggests that ionic activities of these metals are high enough in some polluted estuaries to affect the survival and reproduction of copepods.  相似文献   

13.
The mechanisms for uptake of inorganic carbon (Ci) for photosynthesis and calcification of a perforate foraminifer, Amphistegina lobifera Larsen, and an imperforate species, Amphisorus hemprichii Ehrenberg, from the Gulf of Eilat, Red Sea were studied in 1986–1987 using 14C tracer techniques. Total Ci uptake of A. lobifera and photosynthetic carbon uptake of A. hemprichii fit the Hill-Whittingham equation that describes the overall rate of enzymatic reactions that are provided with their substrate through a diffusion barrier. This suggests that diffusion is the rate limiting step for total Ci uptake in A. lobifera. Photosynthesis by the isolated symbionts and uptake of CO3 2- for calcification obey Michaelis-Menten kinetics indicating that enzymatic reactions determine the rate of the separate processes. Both photosynthesis and calcification can be inhibited without affecting each other. Calcification rates in A. lobifera were optimal at Ca levels around normal seawater concentration and were sensitive to inhibitors of respiratory adenosine triphosphate (ATP) generation and Ca-ATP-ase. This indicates that Ca uptake is also active. Calcification rates of A. hemprichii increased linearly as a function of external Ci concentration over the entire experimental range (0 to 4 mM Ci). In contrast, photosynthetic rates showed Hill-Whittingham type kinetics. The dependence of calcification on the CO3 2- concentration was also linear, suggesting that its diffusion is the rate limiting step for calcification in A. hemprichii. Increasing Ca concentrations yielded higher calcification rates over the entire range measured (0 to 40 mM Ca). Calcification in A. hemprichii was less sensitive to inhibitors of ATP generation than in A. lobifera, suggesting that in A. hemprichii energy supply is less important for this process.  相似文献   

14.
Distribution of metallic constituents between soil and aerial parts of wild plants has been discussed by using relative ionic impulsions, i/I, defined as functions of concentrations of metallics ions, being i = [M]1/2M, zM the oxidation state of considered metal and I = S i the summation of contribution of metals. For this calculation metals were divided into two groups leading to I macro (K, Na, Ca, Mg, and Mn, elements accumulated in aerial parts) and to I Micro (Fe, Cu, Zn, Co and contaminants accumulated in roots). Relative ionic impulsions may be attributed to an electric potential gradient and show if an active or passive uptake is happening. For macroelements linear relationships were obtained for Mg‐K (global active uptake) and Na‐Mn‐Ca (global passive uptake) with inverse slopes. Passive ions seem to be used as counter ions for helping active assimilation. Calculated potential gradient was close to 20 mV. The same situation was found for microelements and pollutants, where Fe is taken passively helping assimilation of the rest (Cu, Zn, Co, Cd, Pb, Ni and Cr) with a potential gradient close to 13 mV. Influences of other ecological segments (rainfall, dry deposition, airborne dust and irrigation), as well as additions for amending contaminated soils are finally discussed.  相似文献   

15.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   

16.
A. Israel  S. Beer 《Marine Biology》1992,112(4):697-700
In this continuing study on photosynthesis of the marine red alga Gracilaria conferta, it was found that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in crude extracts had a K m (CO2) of 85 M. Since seawater contains only ca. 10 M CO2, it appears that this alga must possess a CO2 concetrating system in order to supply sufficient CO2 to the vicinity of the enzyme. Because this species is a C3 plant (and thus lacks the C4 system for concentrating CO2), but can utilize HCO3 - as an exogenous carbon source, we examined whether HCO3 - uptake could be the initial step of such a CO2 concetrating system. The surface pH of G. conferta thalli was 9.4 during photosynthesis. At this pH, estimated maximal uncatalyzed HCO3 - dehydration (CO2 formation) within the unstirred layer was too slow to account for measured phostosynthetic rates, even in the presence of an external carbonic anhydrase inhibitor. This observation, and the marked pH increase in the unstirred layer following the onset of light, suggests that a HCO3 - transport system (probably coupled to transmembrane H+/OH- fluxes) operates at the plasmalemma level. The involvement of surface-bound carbonic anhydrase in such a system remains, however, obscure. The apparent need of marine macroalgae such as G. conferta for CO2 concentrating mechanisms is discussed with regard to their low affinity of Rubisco to CO2 and the low rate of CO2 supply in water. The close similarity between rates of Rubisco carboxylation and measured photosynthesis further suggests that the carboxylase activity, rather than inorganic carbon transport and intercoversion events, could be an internal limiting factor for photosynthetic rates of G. conferta.  相似文献   

17.
R. Beiras  J. Widdows 《Marine Biology》1995,123(2):327-334
Chemical (neuroactive compounds at different concentrations and exposure times) and physical (water agitation, light) factors with potential effects on the metamorphosis of larvae of the oyster Crassostrea gigas (Thunberg) larvae have been studied. The neurotransmitters l-dihydroxyphenylalanine (DO), epinephrine (EP), norepinephrine (NE), and acetylcholine (AC) have been identified as very active inducers of metamorphosis, whilst serotonin (SE), dopamine (DA) and potassium (K) were less effective inducers. The -aminobutyric acid (GA) and ammonium (AM) were found ineffective at the concentrations tested. Exposure to 10-4 M EP for 15 min was sufficient to promote >80% metamorphosis within 48 h, whereas NE required 2 h to exert comparable induction. Maximum induction by DO (>50%) was achieved after 2 h exposure to 10-4 M. However, unlike EP and NE, DO was lethal at that concentration in the long term. Maximum induction by AC (30% metamorphosis) was achieved at a concentration of 10-4 M. In contrast to other neurotransmitters, AC induced settlement behaviour, cementation and eventual metamorphosis, yielding postlarvae which were all attached to the substratum. EP and NE triggered the morphogenetic changes, by-passing settlement and leading to postlarvae not cemented to the substratum. DO induced mostly attached spat at low concentrations (10-5 M) and unattached spat at high concentrations (10-4 M), and a similar pattern was apparent for the weaker inducers SE and DA. Regarding physical factors, a highly reflectant surface significantly increased the percentage of attached spat obtained, compared to a dark bottom. No consistent effect of water current or light was detected on the production of unattached spat. The three different forms of induction are discussed in relation to different regulatory pathways of settlement and metamorphosis.  相似文献   

18.
The European seabass is an active euryhaline teleost that migrates and forages in waters of widely differing salinities. Oxygen uptake (MO2) was measured in seabass (average mass and forklength 510 g and 34 cm, respectively) during exercise at incremental swimming speeds in a tunnel respirometer in seawater (SW) at a salinity of 30 and temperature of 14°C, and their maximal sustainable (critical) swimming speed (Ucrit) determined. Cardiac output (Q) was measured via an ultrasound flow probe on their ventral aorta. The fish were then exposed to acute reductions in water salinity, to either SW (control), 10, 5, or freshwater (FW, 0), and their exercise and cardiac performance measured again, 18 h later. Seabass were also acclimated to FW for 3 weeks, and then their exercise performance measured before and at 18 h after acute exposure to SW at 30. In SW, seabass exhibited an exponential increase in MO2 and Q with increasing swimming speed, to a maximum MO2 of 339±17 mg kg–1 h–1 and maximum Q of 52.0±1.9 ml min–1 kg–1 (mean±1 SEM; n=19). Both MO2 and Q exhibited signs of a plateau as the fish approached a Ucrit of 2.25±0.08 bodylengths s–1. Increases in Q during exercise were almost exclusively due to increased heart rate rather than ventricular stroke volume. There were no significant effects of the changes in salinity upon MO2 during exercise, Ucrit or cardiac performance. This was linked to an exceptional capacity to maintain plasma osmolality and tissue water content unchanged following all salinity challenges. This extraordinary adaptation would allow the seabass to maintain skeletal and cardiac muscle function while migrating through waters of widely differing salinities.Communicated by S.A. Poulet, Roscoff  相似文献   

19.
Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW–1 h–1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 M NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW–1 h–1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW–1 h–1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 M) than all other collection sites (0.7 M). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.  相似文献   

20.
Calcium exchange and differential saturation of algal calcium pools complicate the application of the 45Ca tracer method for the determination of net deposition rates of calcium in calcareous algae. The kinetics of 45Ca uptake is critically reevaluated, and it is shown that incorporation occurs in two stages. A fast stage, saturating the exchangeable calcium pools; and a slow stage, giving rise to net deposition. The reliability of the method much depends on the determination of the second rate constant. Calcium net-deposition rates are obtained from the expression , where represents the second rate constant and S SW the specific activity of the seawater. Calcium exchange and recycling of tracer would lower the second rate constant, hence the method will give rise to minimum values. The application of the method is demonstrated for the following algae: Halimeda incrassata, H. opuntia, Penicillus pyriformis, Udotea flabellum, Cymopolia barbata, Padina sanctae crucis and Amphiroa fragilissima; the results show close agreement of data with independent chemical estimates.Sonderforschungsbereich 95 der Universität Kiel, Publication No. 200.Contribution No. 732 from the Bermuda Biological Station for Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号