首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Evaluation of adaptive management options is very crucial for successfully dealing with negative climate change impacts. Research objectives of this study were (1) to determine the proper N application rate for current practice, (2) to select a range of synthetic wheat (Triticum aestivum L.) cultivars to expand the existing wheat cultivar pool for adaptation purpose, (3) to quantify the potential impacts of climate change on wheat grain yield and (4) to evaluate the effectiveness of three common management options such as early sowing, changing N application rate and use of different wheat cultivars derived in (2) and given in the APSIM-Wheat model package in dealing with the projected negative impacts for Keith, South Australia. The APSIM-Wheat model was used to achieve these objectives. It was found that 75 kg ha?1 N application at sowing for current situation is appropriate for the study location. This provided a non-limiting N supply condition for climate change impact and adaptation evaluation. Negative impacts of climate change on wheat grain yield were projected under both high (?15%) and low (?10%) plant available water capacity conditions. Neither changes in N application level nor in wheat cultivar alone nor their synergistic effects could offset the negative climate change impact. It was found that early sowing is an effective adaptation strategy when initial soil water was reset at 25 mm at sowing but this may be hard to realise especially since a drier environment is projected.  相似文献   

2.
Scientific evidence accumulating over the past decade documents that climate change impacts are already being experienced in the US Northeast. Policy-makers and resource managers must now prepare for the impacts from climate change and support implementing such plans on the ground. In this paper we argue that climate change challenges the region to maintain its economic viability, but also holds some opportunities that may enhance economic development, human well-being, and social justice. To face these challenges and seize these opportunities effectively we must better understand adaptation capacities, opportunities and constraints, the social processes of adaptation, approaches for engaging critical players and the broader public in informed debate, decision-making, and conscious interventions in the adaptation process. This paper offers a preliminary qualitative assessment, in which we emphasize the need for (1) assessing the feasibility and side effects of technological adaptation options, (2) increasing available resources and improving equitable access to them, (3) increasing institutional flexibility, fit, cooperation and decision-making authority, (4) using and enhancing human and social capital, (5) improving access to insurance and other risk-spreading mechanisms, and (6) linking scientific information more effectively to decision-makers while engaging the public. Throughout, we explore these issues through illustrative sectoral examples. We conclude with a number of principles that may guide the preparation of future adaptation plans for the Northeast.  相似文献   

3.
Climate change, population growth and socio-structural changes will make meeting future food demands extremely challenging. As wheat is a globally traded food commodity central to the food security of many nations, this paper uses it as an example to explore the impact of climate change on global food supply and quantify the resulting greenhouse gas emissions. Published data on projected wheat production is used to analyse how global production can be increased to match projected demand. The results show that the largest projected wheat demand increases are in areas most likely to suffer severe climate change impacts, but that global demand could be met if northern hemisphere producers exploit climate change benefits to increase production and narrow their yield gaps. Life cycle assessment of different climate change scenarios shows that in the case of one of the most important wheat producers (the UK) it may be possible to improve yields with an increase of only 0.6% in the emission intensity per unit of wheat produced in a 2 °C scenario. However, UK production would need to rise substantially, increasing total UK wheat production emissions by 26%. This demonstrates how national emission inventories and associated targets do not incentivise minimisation of global greenhouse gas emissions while meeting increased food demands, highlighting a triad of challenges: meeting the rising demand for food, adapting to climate change and reducing emissions.  相似文献   

4.
We used three approaches to assess potential effects of climate change on birds of the Northeast. First, we created distribution and abundance models for common bird species using climate, elevation, and tree species variables and modeled how bird distributions might change as habitats shift. Second, we assessed potential effects on high-elevation birds, especially Bicknell’s thrush (Catharus bicknelli), that may be particularly vulnerable to climate change, by using statistical associations between climate, spruce-fir forest vegetation and bird survey data. Last, we complemented these projections with an assessment of how habitat quality of a migratory songbird, the black-throated blue warbler (Dendroica caerulescens) might be affected by climate change. Large changes in bird communities of the Northeast are likely to result from climate change, and these changes will be most dramatic under a scenario of continued high emissions. Indeed, high-elevation bird species may currently be at the threshold of critical change with as little as 1°C warming reducing suitable habitat by more than half. Species at mid elevations are likely to experience declines in habitat quality that could affect demography. Although not all species will be affected adversely, some of the Northeast’s iconic species, such as common loon and black-capped chickadee, and some of its most abundant species, including several neotropical migrants, are projected to decline significantly in abundance under all climate change scenarios. No clear mitigation strategies are apparent, as shifts in species’ abundances and ranges will occur across all habitat types and for species with widely differing ecologies.  相似文献   

5.
To prepare agricultural systems for climate change, scientists need to be able to effectively engage with land managers and policy makers to explore potential solutions. An ongoing challenge in engagement is to distil the complexity of climate-change-management-change interactions in agro-ecological systems to identify responses that are most important for adaptation planning. This paper presents an approach for selecting climate change scenarios to provide a focal point for engaging with stakeholders to evaluate adaptation options and communicate assessment outcomes. We illustrate how scenarios selected with the approach can be used by evaluating climate change impacts and an adaptation option for livestock industries in the north-east Australian rangelands. Climate change impacts on forage production, animal liveweight gain and soil loss are found to track projected climate changes in four pasture communities; increasing by up to 50% and declining by up to 110% in response to doubled atmospheric carbon-dioxide (CO2), 4°C warming, and +20% to ?40% changes in mean annual rainfall. The effectiveness of reducing grazing pressure as an adaptation option shows a similar response; resulting in higher forage production (up to 40%), animal liveweight gains (up to 59%) and gross margins (up to 40%), and reduced soil erosion (down by 91%) per hectare relative to the baseline management. The results show that a few key scenarios may be selected to represent the range of global climate model (GCM) projections for use in assessing and communicating impacts and adaptation; simplifying the assessments and allowing limits to the effectiveness of adaptation options to be explored. The approach provides a framework for capturing and communicating trends in climate change impacts and the utility of options, which are required for successful engagement of stakeholders in finding viable adaption responses.  相似文献   

6.
Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained by integrating the positivist approaches used in public health and epidemiology, with holistic social science perspectives on health in which the concept of ‘wellbeing’ is more explicitly recognised. Such an approach enables us to acknowledge and explore a wide range of more subtle, yet important health-related outcomes of climate change. At the same time, incorporating notions of wellbeing enables recognition of both the health co-benefits and dis-benefits of climate change adaptation and mitigation strategies across different population groups and geographical contexts. The paper recommends that future adaptation and mitigation policies seek to ensure that benefits are available for all since current evidence suggests that they are spatially and socially differentiated, and their accessibility is dependent on a range of contextually specific socio-cultural factors.  相似文献   

7.
Socio-economic impacts of climate change on rural United States   总被引:4,自引:4,他引:0  
Directly or indirectly, positively or negatively, climate change will affect all sectors and regions of the United States. The impacts, however, will not be homogenous across regions, sectors, population groups or time. The literature specifically related to how climate change will affect rural communities, their resilience, and adaptive capacity in the United States (U.S.) is scarce. This article bridges this knowledge gap through an extensive review of the current state of knowledge to make inferences about the rural communities vulnerability to climate change based on Intergovernmental Panel on Climate Change (IPCC) scenarios. Our analysis shows that rural communities tend to be more vulnerable than their urban counterparts due to factors such as demography, occupations, earnings, literacy, poverty incidence, and dependency on government funds. Climate change impacts on rural communities differs across regions and economic sectors; some will likely benefit while others lose. Rural communities engaged in agricultural and forest related activities in the Northeast might benefit, while those in the Southwest and Southeast could face additional water stress and increased energy cost respectively. Developing adaptation and mitigation policy options geared towards reducing climatic vulnerability of rural communities is warranted. A set of regional and local studies is needed to delineate climate change impacts across rural and urban communities, and to develop appropriate policies to mitigate these impacts. Integrating research across disciplines, strengthening research-policy linkages, integrating ecosystem services while undertaking resource valuation, and expanding alternative energy sources, might also enhance coping capacity of rural communities in face of future climate change.  相似文献   

8.
Mitigation and adaptation synergy in forest sector   总被引:1,自引:1,他引:1  
Mitigation and adaptation are the two main strategies to address climate change. Mitigation and adaptation have been considered separately in the global negotiations as well as literature. There is a realization on the need to explore and promote synergy between mitigation and adaptation while addressing climate change. In this paper, an attempt is made to explore the synergy between mitigation and adaptation by considering forest sector, which on the one hand is projected to be adversely impacted under the projected climate change scenarios and on the other provide opportunities to mitigate climate change. Thus, the potential and need for incorporating adaptation strategies and practices in mitigation projects is presented with a few examples. Firstly, there is a need to ensure that mitigation programs or projects do not increase the vulnerability of forest ecosystems and plantations. Secondly, several adaptation practices could be incorporated into mitigation projects to reduce vulnerability. Further, many of the mitigation projects indeed reduce vulnerability and promote adaptation, for example; forest and biodiversity conservation, protected area management and sustainable forestry. Also, many adaptation options such as urban forestry, soil and water conservation and drought resistant varieties also contribute to mitigation of climate change. Thus, there is need for research and field demonstration of synergy between mitigation and adaptation, so that the cost of addressing climate change impacts can be reduced and co-benefits increased.  相似文献   

9.
Climate change is projected to lead to shift of forest types leading to irreversible damage to forests by rendering several species extinct and potentially affecting the livelihoods of local communities and the economy. Approximately 47% and 42% of tropical dry deciduous grids are projected to undergo shifts under A2 and B2 SRES scenarios respectively, as opposed to less than 16% grids comprising of tropical wet evergreen forests. Similarly, the tropical thorny scrub forest is projected to undergo shifts in majority of forested grids under A2 (more than 80%) as well as B2 scenarios (50% of grids). Thus the forest managers and policymakers need to adapt to the ecological as well as the socio-economic impacts of climate change. This requires formulation of effective forest management policies and practices, incorporating climate concerns into long-term forest policy and management plans. India has formulated a large number of innovative and progressive forest policies but a mechanism to ensure effective implementation of these policies is needed. Additional policies and practices may be needed to address the impacts of climate change. This paper discusses an approach and steps involved in the development of an adaptation framework as well as policies, strategies and practices needed for mainstreaming adaptation to cope with projected climate change. Further, the existing barriers which may affect proactive adaptation planning given the scale, accuracy and uncertainty associated with assessing climate change impacts are presented.  相似文献   

10.
Small island developing states (SIDS) are among the countries in the world that are most vulnerable to climate change and required to adapt to its impacts. Yet, there is little information in the academic literature about how SIDS are adapting to climate change, across multiple countries and geographic regions. This paper helps to fill this gap. Using a sample of 16 countries across the Atlantic, Indian Ocean and South China Sea, Caribbean and Pacific regions, this study has two main aims, to identify (1) national-level adaptation trends across climate, climate-induced and non-climate-induced vulnerabilities, sectors and actors, as reported in National Communications (NCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and (2) typologies of national-level adaptation actions in SIDS. It identifies, codes and assesses 977 adaptation actions. These actions were reported as addressing 47 climate and climate-induced vulnerabilities and 50 non-climate-induced vulnerabilities and were undertaken in 37 sectors by 34 actors. The paper proposes five typologies of adaptation actions for SIDS, based on actions reported by SIDS. It specifically explores the implications of its findings for global adaptation strategies. As this work establishes a baseline of adaptation action in SIDS, it can assist national governments to gauge their adaptation progress, identify gaps in their adaptation effort and, thereafter, develop appropriate strategies for filling the gaps. It can also assist donors, whether bilateral or multilateral, to make more ‘climate-smart’ investment decisions by being able to identify the adaptation needs that are not being met in SIDS.  相似文献   

11.
This two-part paper considers the complementarity between adaptation and mitigation in managing the risks associated with the enhanced greenhouse effect. Part one reviews the application of risk management methods to climate change assessments. Formal investigations of the enhanced greenhouse effect have produced three generations of risk assessment. The first led to the United Nations Intergovernmental Panel on Climate Change (IPCC), First Assessment Report and subsequent drafting of the United Nations Framework Convention on Climate Change. The second investigated the impacts of unmitigated climate change in the Second and Third IPCC Assessment Reports. The third generation, currently underway, is investigating how risk management options can be prioritised and implemented. Mitigation and adaptation have two main areas of complementarity. Firstly, they each manage different components of future climate-related risk. Mitigation reduces the number and magnitude of potential climate hazards, reducing the most severe changes first. Adaptation increases the ability to cope with climate hazards by reducing system sensitivity or by reducing the consequent level of harm. Secondly, they manage risks at different extremes of the potential range of future climate change. Adaptation works best with changes of lesser magnitude at the lower end of the potential range. Where there is sufficient adaptive capacity, adaptation improves the ability of a system to cope with increasingly larger changes over time. By moving from uncontrolled emissions towards stabilisation of greenhouse gases in the atmosphere, mitigation limits the upper part of the range. Different activities have various blends of adaptive and mitigative capacity. In some cases, high sensitivity and low adaptive capacity may lead to large residual climate risks; in other cases, a large adaptive capacity may mean that residual risks are small or non-existent. Mitigative and adaptive capacity do not share the same scale: adaptive capacity is expressed locally, whereas mitigative capacity is different for each activity and location but needs to be aggregated at the global scale to properly assess its potential benefits in reducing climate hazards. This can be seen as a demand for mitigation, which can be exercised at the local scale through exercising mitigative capacity. Part two of the paper deals with the situation where regional bodies aim to maximise the benefits of managing climate risks by integrating adaptation and mitigation measures at their various scales of operation. In north central Victoria, Australia, adaptation and mitigation are being jointly managed by a greenhouse consortium and a catchment management authority. Several related studies investigating large-scale revegetation are used to show how climate change impacts and sequestration measures affect soil, salt and carbon fluxes in the landscape. These studies show that trade-offs between these interactions will have to be carefully managed to maximise their relative benefits. The paper concludes that when managing climate change risks, there are many instances where adaptation and mitigation can be integrated at the operational level. However, significant gaps between our understanding of the benefits of adaptation and mitigation between local and global scales remain. Some of these may be addressed by matching demands for mitigation (for activities and locations where adaptive capacity will be exceeded) with the ability to supply that demand through localised mitigative capacity by means of globally integrated mechanisms.  相似文献   

12.
Numerous empirical and simulation-based studies have documented or estimated variable impacts to the economic growth of nation states due to the adoption of domestic climate change mitigation policies. However, few studies have been able to empirically link projected changes in economic growth to the provision of public goods and services. In this research, we couple projected changes in economic growth to US states brought about by the adoption of a domestic climate change mitigation policy with a longitudinal panel dataset detailing the production of outdoor recreation opportunities on lands managed in the public interest. Joining empirical data and simulation-based estimates allow us to better understand how the adoption of a domestic climate change mitigation policy would affect the provision of public goods in the future. We first employ a technical efficiency model and metrics to provide decision makers with evidence of specific areas where operational efficiencies within the nation's state park systems can be improved. We then augment the empirical analysis with simulation-based changes in gross state product (GSP) to estimate changes to the states’ ability to provide outdoor recreation opportunities from 2014 to 2020; the results reveal substantial variability across states. Finally, we explore two potential solutions (increasing GSP or increasing technical efficiency) for addressing the negative impacts on the states’ park systems operating budgets brought about by the adoption of a domestic climate change mitigation policy; the analyses suggest increasing technical efficiency would be the most viable solution if/when the US adopts a greenhouse gas reduction policy.  相似文献   

13.
With growing evidence on how climate change impacts human health, public health agencies should develop adaptation programs focused on the impacts predicted to affect their jurisdictions. However, recent research indicates that public health agencies in the United States have done little to prepare the public for predicted climate change impacts, largely due in response to a lack of resources and priority. This study surveyed Environmental Health (EH) Directors across the United States to determine the extent to which individual level attitudes and beliefs influence the adoption of climate change adaptation programming in a department. The results indicate that an EH Director’s perception of the health risk posed by climate change explained 27% of the variance in the number of climate change impacts being addressed. Furthermore, the study found that environmental attitude and political views made strong, unique contributions in explaining the variance in risk perception. The results provide evidence that individual-level attitudes and beliefs, as well as organizational-level barriers influence the adoption of climate change adaptation programs in public health agencies. As a result, increasing EH Directors’ perception of risk by highlighting the likelihood and severity of localized impacts may increase the adoption of adaptation programming despite existing organizational barriers (e.g., lack of resources). Given the fact that risk perception has been shown to influence behavior across cultures, these findings are also useful for understanding the influence of individual decision makers on public health programming around the world.  相似文献   

14.
IPCC第一工作组评估报告分析及建议   总被引:1,自引:0,他引:1       下载免费PDF全文
2021年8月6日,政府间气候变化专门委员会(IPCC)第一工作组第六次评估报告(AR6)发布,针对气候系统变化科学领域最新研究进展和成果进行了全面、系统的评估. AR6以更强有力的证据进一步确定了近百年全球气候变暖的客观事实,人类活动对气候变暖影响的信号更为清晰. 本文总结了历次IPCC评估报告,并从气候现状、未来可能的气候状态、风险评估和区域适应气候变化信息以及减缓未来气候变化4个方面对AR6进行系统梳理. 结果表明:人类活动产生的温室气体对大气、海洋、冰冻圈和生物圈的影响前所未有,引发了全球许多地区的极端天气和气候极端事件. 未来若温室气体排放没有显著减少,到2100年全球地表温度将至少升高2.1 ℃;如若人类影响得到有效改善,在最低排放情景(SSP1-1.9)中,2055年将变为负碳,到21世纪末气温开始再次下降. 减少CH4等其他污染物可以为全球气候治理争取时间,并改善空气质量. 建议中国应对气候变化应加强基础科学研究,聚焦模式开发和应用及与各工作组之间的衔接,加快短寿命气候强迫(SLCFs)与温室气体协同控制研究,强化应对气候变化政策措施的科技支撑等.   相似文献   

15.
Factors influencing support for climate mitigation policy in the United States are well researched, however, research regarding individuals’ support for climate adaptation policy is relatively sparse. This study explores how an individual’s perception of climate change impacts may influence their support for adaptation actions. Results of a survey of the U.S. public (n = 653) indicates that individuals who believe climate change impacts are unlikely to happen or will primarily affect other people in other places are less likely to be concerned about climate change impacts and less likely to support climate adaptation. However, an individual’s support for climate change adaptation measures is not influenced by their perception of when climate change impacts will occur even when taking into account concern for climate impacts. Critical for policy-makers, a belief that climate adaptation measures will not be effective attenuates the relationship between psychological distance, concern for climate change impacts, and adaptation policy measures. Our results indicate that to effectively communicate about climate change, policy-makers should emphasize that: (i) climate change impacts are occurring, (ii) that their constituents are being affected now, or will be in the future, and (iii) communicate that adaptation measures can be effective in addressing risks associated with climate change impacts.  相似文献   

16.
Nowadays, adaptation has become a key focus of the scientific and policy-making communities and is a major area of discussion in the multilateral climate change process. As climate change is projected to hit the poorest the hardest, it is especially important for developing countries to pay particular attention to the management of natural resources and agricultural activities. In most of these countries such as Cameroon, forest can play important role in achieving broader climate change adaptation goals. However, forest generally receives very little attention in national development programme and strategies such as policy dialogues on climate change and poverty reduction strategies. Using a qualitative approach to data collection through content analysis of relevant Cameroon policy documents, the integration of climate change adaptation was explored and the level of attention given to forests for adaptation analysed. Results indicate that, with the exception of the First National Communication to UNFCCC that focused mostly on mitigation and related issues, current policy documents in Cameroon are void of tangible reference to climate change, and hence failing in drawing the relevance of forest in sheltering populations from the many projected impacts of climate change. Policies related to forest rely on a generalized concept of sustainable forest management and do not identify the specific changes that need to be incorporated into management strategies and policies towards achieving adaptation. The strategies and recommendations made in those documents only serve to improve understanding of Cameroon natural resources and add resilience to the natural systems in coping with anthropogenic stresses. The paper draws attention to the need to address the constraints of lack of awareness and poor flow of information on the potentials of forests for climate change adaptation. It highlights the need for integrating forest for adaptation into national development programmes and strategies, and recommends a review of the existing environmental legislations and their implications on poverty reduction strategy and adaptation to climate change.  相似文献   

17.
Climate change is affecting the productivity of crops and their regional distribution. Strategies to enhance local adaptation capacity are needed to mitigate climate change impacts and to maintain regional stability of food production. The objectives of this study were to simulate the climate change effects on phenological stages, Leaf Area Index (LAI), biomass and grain yield of maize (Zea mays L.) in the future and to explore the possibilities of employing irrigation water and planting dates as adaptation strategies to decrease the climate change impacts on maize production in Khorasan Razavi province, Iran. For this purpose, we employed two types of General Circulation Models ((United Kingdom Met. Office Hadley Center: HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1). Long Ashton Research Station-Weather Generator (LARS-WG) was used to produce daily climatic parameters as one stochastic growing season for each projection period. Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters. Time period from cultivation until anthesis and maturity were reduced in majority of scenarios as affected by climate change. The results indicated that the grain yield of maize may be reduced (11 % to 38 %) as affected by climate change based on common planting date in baseline and changed (?61 % to 48 %) in response to different irrigation regimes in the future climate change, under all scenarios and times. In general, earlier planting date (1 May) and decreasing irrigation intervals in the anthesis stage (11 applications) caused higher yield compared with other planting dates due to adaption to high temperature. Based on our findings, it seems that management of irrigation water and planting dates can be beneficial for adaptation of maize to climate change in this region.  相似文献   

18.
We make an assessment of the impact of projected climate change on forest ecosystems in India. This assessment is based on climate projections of the Regional Climate Model of the Hadley Centre (HadRM3) and the dynamic global vegetation model IBIS for A2 and B2 scenarios. According to the model projections, 39% of forest grids are likely to undergo vegetation type change under the A2 scenario and 34% under the B2 scenario by the end of this century. However, in many forest dominant states such as Chattisgarh, Karnataka and Andhra Pradesh up to 73%, 67% and 62% of forested grids are projected to undergo change. Net Primary Productivity (NPP) is projected to increase by 68.8% and 51.2% under the A2 and B2 scenarios, respectively, and soil organic carbon (SOC) by 37.5% for A2 and 30.2% for B2 scenario. Based on the dynamic global vegetation modeling, we present a forest vulnerability index for India which is based on the observed datasets of forest density, forest biodiversity as well as model predicted vegetation type shift estimates for forested grids. The vulnerability index suggests that upper Himalayas, northern and central parts of Western Ghats and parts of central India are most vulnerable to projected impacts of climate change, while Northeastern forests are more resilient. Thus our study points to the need for developing and implementing adaptation strategies to reduce vulnerability of forests to projected climate change.  相似文献   

19.
Adaptation is a key factor for reducing the future vulnerability of climate change impacts on crop production. The objectives of this study were to simulate the climate change effects on growth and grain yield of maize (Zea mays L.) and to evaluate the possibilities of employing various cultivar of maize in three classes (long, medium and short maturity) as an adaptation option for mitigating the climate change impacts on maize production in Khorasan Razavi province of Iran. For this purpose, we employed two types of General Circulation Models (GCMs) and three scenarios (A1B, A2 and B1). Daily climatic parameters as one stochastic growing season for each projection period were generated by Long Ashton Research Station-Weather Generator (LARS?WG). Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. LARS-WG had appropriate prediction for climatic parameters. The predicted results showed that the day to anthesis (DTA) and anthesis period (AP) of various cultivars of maize were shortened in response to climate change impacts in all scenarios and GCMs models; ranging between 0.5 % to 17.5 % for DTA and 5 % to 33 % for AP. The simulated grain yields of different cultivars was gradually decreased across all the scenarios by 6.4 % to 42.15 % during the future 100 years compared to the present climate conditions. The short and medium season cultivars were faced with the lowest and highest reduction of the traits, respectively. It means that for the short maturing cultivars, the impacts of high temperature stress could be much less compared with medium and long maturity cultivars. Based on our findings, it can be concluded that cultivation of early maturing cultivars of maize can be considered as the effective approach to mitigate the adverse effects of climate.  相似文献   

20.
Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by,inter alia, incorporating climate change risk assessment into development planning processes i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (or, better, adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. The urgent issue is the mismatch between the predictions ofglobal climatic change and the need for information onlocal to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. Moreover, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. Unfortunately, climate models cannot yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号