首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long-term monitoring studies revealed a negative correlation between the abundance of bottom-feeding fishes (Leiostomus xanthurus and Micropogonias undulatus) and benthic macrofaunal density, suggesting a causal relationship. To test this hypothesis, large (3x3 m) topless predator-exclusion cages (mesh opening=6 mm) of a design that produced minimal physical artifacts were constructed at two shallow mud-bottom oligohaline stations. Two-sided control cages and uncaged control areas were also sampled Experiments coincided with maximum abundances of bottom-feeding fishes in the spring and motile macroinvertebrates (penaeid shrimp) in the fall. During short-term (two-month) exclusion experiments in the spring and fall of 1980, large predators (those excluded by 6-mm mesh) were not a major factor in regulating the densities of most macrofaunal species. Predation may be important during other seasons, although this possibility was not tested. Densities of Leiostomus xanthurus and Penaeus setiferus during 1980 were lower than in previous years. Despite the reduced abundance of bottom-feeding fishes, macrofaunal densities still declined during late winter/early spring. It is postulated that increased river flow and lowered salinities during the late winter/early spring may contribute to the decline of macrofaunal densities by reducing larval recruitment.  相似文献   

2.
The mobile macrofauna in submerged detritus accumulations (SDAs) of the seagrass Posidonia oceanica was investigated in the Bay of Calvi, Corsica, Mediterranean Sea. The distribution of the macrofauna was related to the exposure of the habitat and to the degree of packing and decomposition of the SDAs. In the less decomposed, younger SDAs, the number of individuals per species, but also species richness, was relatively low. In the more decomposed, older SDAs, the abundance and number of species increased, showing predominance of a few crustacean taxa such as gammaridean amphipods, shrimps and the leptostracan Nebalia bipes. Many of the macrofaunal species in the SDAs are members of the animal communities of surrounding seagrass meadows or adjacent hard or soft bottoms, while others, like N. bipes, apparently live in closer association with the SDAs.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
Coral reef lagoons are generally regarded as zones of net heterotrophy reliant on organic detritus generated in more productive parts of the reef system, such as the seaward reef flat. The abundance and biomass of sediment infauna were measured seasonally for one year (1986) within the lagoon of Davies Reef, central Great Barrier Reef, to test the hypothesis that macrofaunal biomass and production of coral reef lagoons would decrease with distance from the reef flat and would change seasonally. In general, there were no simple relationships between infaunal standing stock or production and distance from the reef flat or season. Bioturbation by callianassid shrimps negatively affected the abundance of smaller infauna, suggesting a community limited by biogenic disturbance rather than by supply of organic material. Polychaetes and crustaceans were dominant amongst the smaller infauna (0.5 to 2mm) while larger animals (> 2 mm) were mostly polychaetes and molluscs. Mean biomass of infauna at both sites and all seasons was 3 181 mg C m?2. The smaller animals (0.5 to 2 mm) contributed about 40% of total macrofaunal respiration and production although they represented only 15% of the total macrofaunal biomass. The biomass of macrofauna was about equal to that of the bacteria and meiofauna, while respiration represented 10 to 20% of total community respiration. Consumption by macrofauna accounts for only 3 to 11% of total organic inputs to sediment, with a further 14 to 17% being lost by macrofaunal respiration.  相似文献   

4.
Effects of the predatory naticid snail Polinices duplicatus (Say) on species composition, diversity and density, of the infauna of intertidal sand-flats at Barnstable Harbor, Massachusetts, USA, were studied using field experiments. Responses of molluscs (prey of P. duplicatus) and nonmolluscs (nonprey) were considered separately to distinguish between the effects of feeding and sediment disturbance during foraging. The fauna of 0.25 m2 predator-exclusion cages, coarse-mesh cages, sieved areas, and controls was followed for 1 yr. Species associations within cages from which predators were excluded were denser, more diverse, and richer in molluscs than those in other treatments. Larger areas (3×3 m) of natural bottom were fenced and maintained as snail exclosures and enclosures during two feeding seasons. For both molluscs and nonmolluscs, diversity (H'), number of species, evenness (SD), and density all decreased with increasing snail density. Intense predation pressure on molluscs and selective feeding on thin-shelled bivalves, which were rare, removed individuals and species of molluscs from the community. Comparison of samples taken inside and outside trails made by snails showed that disturbance of the surface sediment layers by snails decreased the abundance of spionid polychaetes and total nonmolluscs. The sipunculan Phascolopsis gouldi and the bivalve Gemma gemma dominated the community in all experimental treatments and were little affected by the activity of Polinices duplicatus. Predation and disturbance by snails lowered community diversity by removing individuals of the less abundant species, and generally maintained population densities below the level where strong competition would occur.  相似文献   

5.
The three juvenile phases of the spiny lobster Panulirus argus (algal phase: 5-15 mm carapace length, CL; postalgal phase: 15-45 mm CL, and subadults: 45-80 mm CL) occur in the reef lagoon at Puerto Morelos, Mexico. The algal phase abounds in this lagoon, which is covered by extensive seagrass-algal meadows, but the density of postalgal and subadult juveniles is low, owing to the scarcity of crevice-type shelters suitable for these phases. The feeding ecology of the three juvenile phases was investigated to examine whether spatial or temporal differences in food intake, diet composition, or nutritional condition occurred among phases and could partially account for the low abundance of the larger juveniles. Juveniles were collected by divers at night, from January to November 1995, throughout the mid-lagoon and back-reef zones. Percent stomach fullness, relative weight of the digestive gland (RWDG, an index of nutritional condition), percent frequency of occurrence and percent volume of food categories in the diet were compared between sexes, juvenile phases, molt stages (postmolt, intermolt, premolt), seasons, and sampling zones (mid-lagoon and back-reef zones). Significant differences in stomach fullness occurred only among molt stages, mainly because postmolt individuals had emptier stomachs. The main food categories in all juvenile phases were crustaceans (mostly hermit crabs and brachyurans) and gastropods, but the food spectrum was wide, including many other animal taxa as well as plant matter. In June 1995, the epibenthic macrofauna was sampled in five sites in the lagoon that differed in their amount of vegetation. The most abundant taxa in all sites were decapods and gastropods, but density and diversity measures showed that the distribution of these potential prey taxa for juvenile P. argus was rather patchy. Diet overlap in juvenile lobsters was high between sexes, juvenile phases, sampling zones, seasons, and molting stages, indicating that all juveniles fed on the same general food categories throughout time. The only factor that affected the RWDG was the juvenile phase. RWDG was significantly lower in subadults than in algal and postalgal phases, suggesting a poorer nutritional condition in the largest juveniles. This may be related to the scarcity of suitable shelters for large juveniles throughout the lagoon, which may preclude subadults from exploiting food resources in areas of the lagoon where shelter is limited.  相似文献   

6.
Five field surveys were conducted in an estuarine intertidal sandflat of the Seto Inland Sea (Japan) between April 1994 and April 1995. Chlorophyll a, pheopigments, total organic carbon and acid-volatile sulphides (AVS) of surface and subsurface sediments, and macrofaunal assemblages were investigated in parallel at 15 stations. Monthly hydrological data of low-tide creek water adjacent to the flat were used as a complementary environmental characterisation of the study area. Strong temporal changes were found among sampling dates, most remarkably in autumn with a major increase of algal detritus and AVS, a sharp reduction in macrofaunal abundances and species richness, and a massive mortality of the clam Ruditapes philippinarum. This dystrophic event was preceded by a photoautotrophic and hypertrophic spring–summer characterized by abundant fresh (i.e., living) algal material, including microphytobenthos and macroalgae (Ulva sp.). In summer, abundant macrofaunal assemblages reached the highest biomass values (455 g wet weight m−2 or 60.6 g ash free dry weight m−2), with a major contribution of filter-feeding bivalves Musculista senhousia and R. philippinarum. These are among the highest values reported in the literature for sedimentary shores. From autumn, there was a progressive recolonisation of macrofauna, initiated by few opportunistic polychaetes (e.g., Cirriformia tentaculata and Polydora sp.), apparently promoting a fast sediment recovery in winter, and followed by new bivalve recruits in the next spring. This study provides the first evidence of significant and interlinked within-year changes in chemical characteristics of sediments and macrofaunal assemblages in an estuarine intertidal flat at a small spatial scale (i.e., tens of meters). This demonstrates the high temporal variability of species–environment relations in these systems and a close relationship in seasonally driven trophodynamic processes among primary producers and benthic consumers. We conclude that a thorough parallel evaluation of the temporal changes in chemical characteristics of sediments should be taken into account in assessing the year-round distribution and changes of intertidal macrofauna, particularly in eutrophic, estuarine intertidal flats.An erratum to this article can be found at  相似文献   

7.
Field manipulation experiments were performed in the Exe Estuary, south west England, in October 1988, to investigate the importance of the meiofaunamacroinfauna trophic link in benthic trophodynamics. Four hypothetically meiofauna-predacious endobenthic macrofauna species were selected for manipulation using the criteria of high abundance and different modes of feeding: Cerastoderma edule (filter-feeder), Nereis diversicolor (omnivorous scavenger), Ophelia bicornis (sand-ingester), Scrobicularia plana (deposit-feeder). Enclosures constructed from plastic tubing, 63 m nylon monofilament mesh and galvanized steel were deployed, containing adult members of these taxa at densities raised to approximately four times that of the surrounding sediment. The experiments ran for 12 tidal cycles. Differences in phyletic meiofaunal abundance between treatment and control enclosures at the termination of the experiment were assessed using both uni- and multivariate dataanalysis techniques. Only two univariate significant differences (p<0.05) existed for the N. diversicolor treatment and two for the S. plana treatment. Annelida, Turbellaria and copepod nauplii were the only meiofauna taxa affected. No univariate significant differences were recorded for either the C. edule or O. bicornis treatments. Multidimensional scaling ordination of the data revealed no consistent changes in community composition between treatments and controls. It is concluded that the experiments provide evidence of minimal predation by macroinfauna upon meiofauna.  相似文献   

8.
S. Mariani  M.-J. Uriz  X. Turon 《Marine Biology》2000,137(5-6):783-790
 We performed an intensive year-round sampling with the aim of studying the abundance of sponge larvae in four Mediterranean benthic communities: photophilic algae, sciaphilous algae, semi-obscure (i.e. low light-intensity) caves and sandy bottoms. We record here for the first time, a larval bloom of Cliona viridis (Schmidt 1862), the most common excavating sponge in the Mediterranean, which took place simultaneously in several rocky communities of the Blanes sub-littoral (NE Spain), and discuss the role of restricted larval dispersal in the distribution of adult sponges. In the communities studied, C. viridis larvae bloomed synchronously once, in June. Spawning and consequent embryo development presumably occurred in May, when water temperature was 16 °C. The free larva is a small, evenly ciliated, weakly swimming parenchymella with low dispersal capabilities. The number of larvae m−3 and sponge abundance (as percent cover and biomass) were significantly higher in the community of sciaphilous algae than in the other communities studied. Because of limited larval dispersal, larval and adult abundance in the communities were positively correlated. Larvae developed into juvenile sponges 10 to 15 d after settlement. Settlers displayed distinctive features: a peripheral cuticle, vacuolar etching-like cells at the sponge base, absence of oscular chimneys, and the presence of zooxanthellae, which were presumably transmitted during oocyte maturation. Received: 24 January 2000 / Accepted: 4 July 2000  相似文献   

9.
The effects of varying intensities of human trampling on sandy beach macrofauna were investigated at an exposed beach on the Eastern Cape coast. An experimental approach investigated the survival rates of four macrofaunal species which were subjected to human trampling at different intensities in a holiday-activity simulation. It was found that the clamDonax serra was slightly impacted at all trampling intensities whileDonax sordidus and the isopodEurydice longicomis were affected only at high trampling intensities. Vigorous beach games, such as volleyball, may have a damaging effect onD. serra. In a second experiment, the severe effects of human trampling onD. serra and the benthic mysidGastrosaccus psammodytes were investigated using numbered animals in enclosures. The results indicated that few members of the macrofauna were damaged at low trampling intensities but substantial damage occurred under intense trampling.  相似文献   

10.
The geographical distributions, seasonal variations in numerical abundance and biomass (mg C m-3) of the predators of the holoplankton of the Bristol Channel, between November 1973 and February 1975, are described. The predator numbers and biomass were dominated by the chaetognath Sagitta elegans Verrill. This species represented 96% of the holoplankton carnivore biomass in the outer, seaward region of the Channel and 60% in the inner region; the remainder being ctenophores. The maximum numerical abundance of S. elegans occurred in September at 129 individuals m-3 (18 mg C m-3). Juveniles (<5 mm) reached maximum numbers of 55 individuals m-3 during June, August and September, demonstrating the reproductive activity of the population. The peak numbers were probably the result of the development of two major generations over the 90 d period from mid-June to mid-September. The tentaculate ctenophores were represented by Pleurobrachia pileus (O. F. Müller). The highest abundance was 81 individuals m-3 (3.0 mg C m-3) at a single site in July in the South Central Channel. However, June was the only month when the ctenophores dominated the carnivore biomass in all regions of the Channel; thereafter, S. elegans was more abundant. Reproduction of the ctenophore occurred from April to September, with juveniles reaching maximum abundance in June at 12 individuals m-3. The estimated food demand of the population in May for the outer region of the Channel was approximately 31% of the daily production of copepods. When the population reached its peak abundance in June, the estimated food requirement outstripped the daily production of copepods and a decline in both the prey and predator standing stocks was observed. Similar estimations were derived for the inner region of the Channel. S. elegans increased from a standing stock of 0.038 mg C m-3 in March to 6.35 mg C m-3 in September. Estimates of the copepod production compared with the derived demand of the chaetognath population showed that the decline in the copepods in the late summer was the result of feeding by this predator. The holoplankton carnivore population was approximately 66% of the copepod standing stock for the 10 mo period November 1973 to September 1974 in the outer region of the Channel and 45% of that in the inner region. The carnivores formed the greater part of the total holoplankton biomass from September through the winter months to February, suggesting a predator-dominated community.  相似文献   

11.
Most research on biological invasions to date has focused on the population dynamics of very successful and disruptive introduced species; however, additional knowledge of the biology of the native species is essential for understanding interactions between the two and may reveal factors that limit invasion success. The invasive bryozoan Membranipora membranacea interacts with native Electra pilosa on two substrates in northwest Atlantic subtidal habitats: highly dynamic and fast-growing kelps; and smaller, more stable, and slow-growing fucoid algae. We quantified the relative abundance and evaluated encounter outcomes in different seasons of these two bryozoans on kelp and Fucus at four sites in Nova Scotia. We also examined the effects of substrate (kelp, Fucus), temperature (7, 10, 13°C), and food (limited, unlimited) on growth rates of E. pilosa in laboratory experiments and using field manipulations. We compared our findings on factors affecting the growth of E. pilosa to those on M. membranacea obtained in similar and thus directly comparable experiments from a previous study. The proportional abundance of M. membranacea was greater than that of E. pilosa on kelps, but the opposite was observed on Fucus. Competitive standoffs between the two bryozoans were more frequent than expected, with no differences recorded between substrates; most encounters were won by M. membranacea. Growth of E. pilosa was faster on Fucus than kelp, decreased with increasing temperature only on Fucus, and was not affected by food. Growth rate of E. pilosa in all treatments was slower than that previously measured for M. membranacea. Faster growth and strong overgrowth abilities likely interact on kelps to ensure success of the invasive bryozoan. Success can be limited by low space availability, which in turn restricts growth rate, and consequently, colony size, such as on fucoid substrates. The incorporation of alternative contexts into invasion research can reveal factors involved in the resilience of native communities.  相似文献   

12.
Settlement into the benthic habitat may be an important process in regulating sea urchin abundance, which potentially modifies the structure of benthic communities. Strong settlement events may increase sea urchin abundance beyond a certain threshold, leading to the formation of coralline barrens (overgrazed communities with a dominance of encrusting coralline algae). To understand the role of settlement in regulating sea urchin populations we first need to determine settlement variability. Temporal variation in settlement of the sea urchin Paracentrotus lividus was monitored at three sites in the Medes Islands, NW Mediterranean, during three settlement seasons (March 1998 through October 2000). Spatial variation in settlement was studied in 1999 at 50 sites along a gradient of exposures to waves and currents, inside and outside the archipelago, and separated by distances from tens to thousands of meters. Bathymetric distribution of settlement was also studied in 2000 at six sites at 5, 10, 15 and 20 m depths. Settlement of P. lividus occurred in a single annual peak within 3 weeks in May–June. Differences in settlement between years were more than two orders of magnitude. Spatial variability was found at all scales investigated, showing strong patchiness at the smallest spatial scales (tens of meters). Sea urchins settled preferentially at depths between 5 and 10 m. Substratum type, level of protection, and adult population densities were not significant in determining settlement. However, settlement was found to be related to the degree of exposure to waves and currents, indicating that physical processes are very important at the spatial scales investigated. This greatly variable settlement is a necessary, although not sufficient, condition to create gradients of adult P. lividus abundance. Further studies should be designed to investigate the interaction between settlement strength and post-settlement mortality.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

13.
Abstract: There is an intense debate about the effects of postfire salvage logging versus nonintervention policies on regeneration of forest communities, but scant information from experimental studies is available. We manipulated a burned forest area on a Mediterranean mountain to experimentally analyze the effect of salvage logging on bird–species abundance, diversity, and assemblage composition. We used a randomized block design with three plots of approximately 25 ha each, established along an elevational gradient in a recently burned area in Sierra Nevada Natural and National Park (southeastern Spain). Three replicates of three treatments differing in postfire burned wood management were established per plot: salvage logging, nonintervention, and an intermediate degree of intervention (felling and lopping most of the trees but leaving all the biomass). Starting 1 year after the fire, we used point sampling to monitor bird abundance in each treatment for 2 consecutive years during the breeding and winter seasons (720 censuses total). Postfire burned‐wood management altered species assemblages. Salvage logged areas had species typical of open‐ and early‐successional habitats. Bird species that inhabit forests were still present in the unsalvaged treatments even though trees were burned, but were almost absent in salvage‐logged areas. Indeed, the main dispersers of mid‐ and late‐successional shrubs and trees, such as thrushes (Turdus spp.) and the European Jay (Garrulus glandarius) were almost restricted to unsalvaged treatments. Salvage logging might thus hamper the natural regeneration of the forest through its impact on assemblages of bird species. Moreover, salvage logging reduced species abundance by 50% and richness by 40%, approximately. The highest diversity at the landscape level (gamma diversity) resulted from a combination of all treatments. Salvage logging may be positive for bird conservation if combined in a mosaic with other, less‐aggressive postfire management, but stand‐wide management with harvest operations has undesirable conservation effects.  相似文献   

14.
H. Queiroga 《Marine Biology》1990,104(3):397-402
The population ofCorophium multisetosum (L.) from Canal de Mira, Ria de Aveiro, Portugal, was sampled seasonally from December 1985 to September 1986, as part of a larger survey of the benthic invertebrate macrofauna. Its distribution along the channel exposes the species to a range of salinities from freshwater to above 30. A principal components analysis, using the physical and chemical parameters of the sediment as variables and sampling stations as operational taxonomic units, indicated that abundance is negatively correlated with salinity, depth, and the occurrence of sediments rich in particles below 125µm and rich in organic matter. Abundance is positively correlated with temperature. The distribution of the species does not seem to be affected by the occurrence of sediment grades between 125 and 1 000µm. Paired-choice salinity experiments indicated thatC. multisetosum prefers salinities within the range 2.5 to 10. In multi-choice experiments concerning sediment grade, amphipods did not show any significant preference within the 125 to 500µm range, although the 125µm grade was chosen less frequently. The influence of temperature on the overall distribution ofC. multisetosum is discussed.  相似文献   

15.
The species composition of macrofauna associated with floating seaweed rafts is highly variable and influenced by many factors like spatial and temporal variation, period since detachment and probably also the seaweed species. The presence of seaweed preferences was assessed by a combination of in situ seaweed samplings and multiple-choice aquarium experiments in a controlled environment, using the seaweed-associated grazing organisms Idotea baltica and Gammarus crinicornis. Results from the sampling data confirm that the seaweed composition influences macrofaunal species composition and abundance: samples dominated by Sargassum muticum displayed higher densities but lower diversities compared to samples dominated by Ascophyllum nodosum and Fucus vesiculosus. Seaweed preference was also apparent from the multiple-choice experiments, but did not exactly match the results of the community analysis: (1) I. baltica had high densities in seaweed samples (SWS) dominated by F. vesiculosus and A. nodosum, while in the experiments, this isopod was most frequently associated with Enteromorpha sp. and F. vesiculosus, and fed mostly on S. muticum, A. nodosum and Enteromorpha sp.; (2) G. crinicornis had high densities in SWS dominated by F. vesiculosus, while in the experiments, this amphipod was most frequently associated with S. muticum, but fed most on A. nodosum and F. vesiculosus. It is clear from the laboratory experiments that preference for habitat (shelter) and food can differ among seaweed species. However, food and habitat preferences are hard to assess because grazer preference may change if choices are increased or decreased, if different sizes of grazers are used, or if predators or other grazers are added to the experiments. The effects of seaweed composition may also be blurred due to the obligate opportunistic nature of a lot of the associated macrofaunal species.  相似文献   

16.
The microalgal community associated with Eudendrium racemosum, a marine hydroid widely distributed in the Mediterranean Sea, was studied during an annual cycle, at monthly frequency, in a coastal station of the Ligurian Sea. Microalgae were represented mainly by diatoms, which exhibited higher abundance and biomass values between autumn and spring (max 46,752 cells mm−2 and 1.94 μg C mm−2, respectively), while during summer a significant decrease was observed (min 917 cells mm−2 and 0.013 μg C mm−2). High levels of abundance of filamentous cyanobacteria were observed in summer. Spatial distribution of epibiontic microalgae showed a markedly increasing gradient from the basal to the apical part of hydroid colonies. Considering the growth forms of diatom communities, motile diatoms (mainly small naviculoid taxa) were the most abundant in all the periods. Adnate (Amphora and Cocconeis spp.) were distributed mainly in the basal and central part of hydroid colonies and showed two peaks (autumn and summer). Erect forms (mainly Tabularia tabulata, Licmophora spp., Cyclophora tenuis) were mainly distributed in the apical part of the colonies and showed their maximum densities in spring–summer. Tube-dwelling (Berkeleya rutilans, Parlibellus sp.) were observed at low densities throughout the study period, without any significant temporal or spatial variability. Comparing the microalgal communities on marine hydroid to those grown on mimic substrata placed in the sampling station during summer, significantly higher values of abundance were observed in the hydroid, suggesting that microalgae may benefit from the polyp catabolites. This fact was particularly evident for the adnate diatoms, whose temporal trend paralleled the cycle of hydroid host.  相似文献   

17.
Habitat-forming species on rocky shores are often subject to high levels of exploitation, but the effects of subsequent habitat loss and fragmentation on associated species and the ecosystem as a whole are poorly understood. In this study, the effects of habitat amount on the fauna associated with mussel beds were investigated, testing for the existence of threshold effects at small landscape scales. Specifically, the relationships between mussel or algal habitat amount and: associated biodiversity, associated macrofaunal abundance and density of mussel recruits were studied at three sites (Kidd’s Beach, Kayser’s Beach and Kini Bay) on the southern and south-eastern coasts of South Africa. Samples, including mussel-associated macrofauna, of 10 × 10 cm were taken from areas with 100 % mussel cover (Perna perna or a combination of P. perna and Mytilus galloprovincialis) at each site. The amount of habitat provided by mussels and algae surrounding the sampled areas was thereafter determined at the 4.0 m2 scale. A number of significant positive relationships were found between the amount of surrounding mussel habitat and the abundances of several taxa (Anthozoa, Malacostraca and Nemertea). Likewise, there were positive relationships between the amount of surrounding algal habitat and total animal abundance as well as abundance of mussel recruits at one site, Kini Bay. In contrast, abundance of mussel recruits showed a significant negative relationship with the amount of mussel habitat at Kayser’s Beach. Significant negative relationships were also detected between the amount of mussel habitat and species richness and total abundance at Kidd’s Beach, and between amount of mussel habitat and the abundance of many taxa (Bivalvia, Gastropoda, Maxillopoda, Ophiuroidea, Polychaeta and Pycnogonida) at all three sites. No threshold effects were found, nor were significant relationships consistent across the investigated sites. The results indicate that the surrounding landscape is important in shaping the structure of communities associated with these mussel beds, with significant effects of the amount of surrounding habitat per se. The strength and the direction of habitat effects vary, however, between shores and probably with the scale of observation as well as with the studied dependent variables (e.g. diversity, abundance, mussel recruitment, species identity), indicating the complexity of the processes structuring macrofaunal communities on these shores.  相似文献   

18.
Comparisons between invertebrate communities hosted by similar foundation species under different environmental conditions permit identification of patterns of species distributions that might be characteristic of the different ecosystems. Similarities and differences in community structure between two major types of chemosynthetic ecosystems were assessed by analyzing samples of invertebrates associated with Bathymodiolus heckerae Gustafson et al. mussel beds at the Florida Escarpment seep (Gulf of Mexico, 26°01.8N; 84°54.9W; October 2000) and B. puteoserpentis von Cosel et al. mussel beds at the Snake Pit vent (Mid-Atlantic Ridge, 23°22.1N; 44°56.9W; July 2001). Macrofaunal species richness was nearly twice as high in the seep mussel bed compared to the vent mussel bed, and only a single morphospecies, the ophiuroid Ophioctenella acies Tyler et al., was shared between the sites. Similarities between the two faunas at higher taxonomic levels (genus and family) were evident for only a small percentage of the total number of taxa, suggesting that evolutionary histories of many of these seep and vent macrofaunal taxa are not shared. The taxonomic distinctiveness of the seep and vent mussel-bed macrofaunal communities supports the hypothesis that environmental and oceanographic barriers prevent most taxa from occupying both types of habitats. Macrofaunal community heterogeneity among samples was similar in seep and vent mussel beds, indicating that spatial scales of processes regulating community variability may be similar in the two types of ecosystems. Suspension feeders were not represented in the macrofauna of seep or vent mussel beds. Primary consumers (deposit feeders and grazers) contributed more to the total abundance of macrofauna of seep mussel beds than vent mussel beds; secondary consumers (polychaetes and shrimp) were more abundant in the vent mussel beds.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-004-1304-z.Communicated by J.P. Grassle, New Brunswick  相似文献   

19.
Bottom trawling causes chronic and widespread disturbance to the seabed in shelf seas. Meiofauna may be impacted directly or indirectly by this disturbance, since the passage of trawls causes immediate mortality or displacement, changes sediment structure and geochemistry and affects the abundance of predators or competitors. Since meiofauna make a significantly greater contribution to benthic production than the larger macrofauna, there are compelling reasons to assess their response to chronic trawling disturbance. In this study, we determined the effects of trawling disturbance, season, sediment type and depth on the structure and diversity of nematode communities. Our analyses were based on comparisons between nematode communities in three beam-trawl fishing areas in the central North Sea. These areas were trawled with mean frequencies of I (low disturbance), 4 (medium) and 6 (high) times year−1 respectively. Our analyses showed that trawling had a significant impact on the composition of nematode assemblages. In two sampling seasons, the number of species, diversity and species richness of the community were significantly lower in the area subject to high levels of trawling disturbance than in the areas subject to low or medium levels of disturbance. However, levels of disturbance at the ‘low’ and ‘medium’ sites may have been insufficient to cause marked longterm changes in community structure. Many of the observed changes were consistent with responses to other forms of physical disturbance. The extent to which the observed changes in community structure reflect changes in the production of the nematode community remains unknown, although overall abundance was not significantly affected by trawling disturbance. Published online. 9 August 2002  相似文献   

20.
Daily commercial catches, school sizes and school densities of larval anchovy, and oceanographic and meteorological variables for the fishing seasons (January to June) from 1988 to 1990 were analyzed by means of principal component analysis to identify causative factors for the aggregation and abundance of larval anchovy, which make up the grounds in the coastal waters of southwest Taiwan. The results suggested that the primary factors associated with the formation of fishing grounds were surface water temperature that related to the occurrence of Engraulis japonicus, surface water salinity that was affected by influex of offshore water and river discharge, and phosphate content and solar radiation that affected plankton production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号