首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Larvae of Myrmeleon immaculatus in large pits captured both large and samll prey, while larvae in small pits captured only the small prey. Larvae in small pits did not respond to large ants, although they always responded by sand-flinging to small ants. Larvae in medium-sized pits often captured large ants only after prolonged and vigorous sand-flipping. Larvae in large pits usually captured large ants with relatively little sand-flipping. Pit enlargement and pit relocation in the laboratory were not significantly correlated with reduction of rations in the first 3 weeks after a pit was built. However, after a month without food, larvae on the average moved once every 10 days, built successively smaller pits, and moved longer distances before building a new pit. In the field pits were dug primarily in response to microclimatological factors and possibly edge-effects. The presence or absence of suitable prey at a site, per se, had no effect on whether or not a larva would dig a pit there. We conclude that these sit-and-wait predators have a relatively large repertoire of behavior that enhances their foraging success, and we contrast it with previously made optimal foraging models relating to pit locations, pit relocations, pit size and ant lion responses.  相似文献   

2.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   

3.
Over the last decades, there has been growing interest among behavioral ecologists in exploring animal personalities. However, while the foraging behavior of active foragers has been extensively studied, only little is known about that of sit-and-wait predators within the personality framework. We investigated the existence of repeatability and personality in pit-building antlion larvae in the context of foraging (pit construction) and habitat selection (relocation distance and direction) over time and under three environmental contexts: thermal conditions, sand depth, and soil type. Over time, repeatability was much stronger for relocation distance than for movement directionality. Additionally, we observed positive correlations across the two levels of sand depth and soil type but not between thermal conditions. Change in substrate type may induce faster decision-making in these sand-dwelling insects or could be perceived by such insects as a more drastic alteration in their habitat. We suggest that different individuals indeed possess distinct personalities. We also suggest that repeatability should be measured at two levels: the amount of energy expenditure (distances and pit construction) and the pattern of energy expenditure (directionality). Finally, our study illustrates how differing environmental conditions can result in differing levels of plasticity, while largely preserving individual personalities.  相似文献   

4.
A thorough understanding of communication requires an evaluation of both the signaler and receiver. Most analyses of prey–predator communication are incomplete because they examine only the behavior of the prey. Predators in these systems may be understudied because they are perceived as less tractable research subjects, due to their more cryptic hunting behaviors and secretive lifestyles. For example, research on interactions between rodents and rattlesnakes has focused on the behavior of rodent signalers, while responses of snakes have been virtually unexamined. Rattlesnakes are ambush predators, and capture rodents by waiting at foraging sites for long periods of time. In this study, I take advantage of the sedentary nature of this foraging strategy and use fixed videography to record natural encounters between timber rattlesnakes (Crotalus horridus) and their prey. Three different prey species were found to exhibit conspicuous visual displays to snakes, both when snakes were actively foraging, and when they were basking. After receiving displays, foraging snakes left their ambush sites and moved long distances before locating subsequent ambush sites, indicating that they responded to displays by abandoning attempts to ambush prey in the vicinity of signalers. This study represents the first quantitative analysis of the response of free-ranging snakes to signals from their prey, and elucidates a technique by which such quantitative data can be more easily obtained.  相似文献   

5.
Summary. Ecological and phylogenetic factors determine which sensory modalities organisms use in their day-to-day activities. Among lizards, empirical studies indicate a tight association between foraging strategies and the ability to detect chemical cues from prey. Consequently, ambush insectivores do not detect food chemicals and these differences have a phylogenetic basis, as ambush lizards mainly belong to the Iguania clade. These data contrast, however, with the widespread uses of chemoreception in the Iguania genus Liolaemus, which are mostly insectivorous ambush predators. Moreover, observations from different Liolaemus species suggest a capability to find prey through chemoreception. In order to clarify the abilities of Liolaemus to detect chemical cues from prey, the chemoreceptive behavior of the insectivorous ambush predator, L. lemniscatus, was studied. Lizards were given the choice between areas with and without chemical cues from a food item (mealworms). Results show that test animals stayed for longer, moved more, and did more chemical exploration (tongue flicks) in the area where chemical cues from mealworms were present. Furthermore, in this area, more individuals displayed behaviors that suggest maintenance and defense of the prey patch. Thus, L. lemniscatus is the first insectivorous Iguania reported to be able to detect chemical cues from prey. Although I propose a mechanism for acquiring chemical detection of prey cues in Liolaemus, I also remark that it is necessary to reanalyze both the abilities to detect and use chemical foraging cues in Iguania at large, and the methodologies traditionally used to study these issues.  相似文献   

6.
Summary The threat-sensitive predator avoidance hypothesis predicts that prey can assess the relative threat posed by a predator and adjust their behaviour to reflect the magnitude of the threat. We tested the ability of larval threespine sticklebacks to adjust their foraging in the presence of predators by exposing them to conspecific predators of various sizes and recording their foraging and predator avoidance behaviours. Larvae (<30 days post-hatch) displayed predator escape behaviours only towards attacking predators. At 3 weeks post-hatch larvae approached the predator after fleeing, a behaviour which may be the precursor to predator inspection. Larvae reduced foraging and spent less time in the proximity of large and medium-sized predators compared to small predators. The reduction in foraging was negatively correlated to the predator/larva size ratio, indicating that larvae increased their foraging as they increased in size relative to the predator. We conclude that larval sticklebacks can assess the threat of predation early in their ontogeny and adjust their behaviour accordingly.Correspondence to: J.A. Brown  相似文献   

7.
The cost of overcoming prey defenses relative to the value of internal tissues is a key criterion in predator/prey interactions. Optimal foraging theory predicts: (1) specific sizes of prey will result in the best returns to predators, and (2) there will often be a size at which the cost/benefit balance is low enough to effectively exclude predation. Data presented here on styles of repaired shell damage and size at which injury had been sustained was collected from samples of terebratulide brachiopods from the Antarctic Peninisula (Liothyrella uva), Falkland Islands (Magellania venosa and Terebratella dorsata) and Chile (M. venosa). The predominant form of damage on shells was indicative of predators attacking the valve margins. The modal size for repaired damage was more than 10 mm smaller than the modal size for the overall size distribution in each species and there were no repaired attacks in the largest size classes of any species. These data suggest that size forms a refuge from predation, as would be predicted by optimal foraging theory. The optimal sizes that predators appeared to attack vary between species, as do the sizes that provided a refuge from predation. High levels of multiple repairs (19% of the M. venosa population from the Falkland Islands sampled had 2 or more repairs) suggest that the mortality following attack is low, suggesting that many predators abandon their attacks.  相似文献   

8.
For a wide range of taxa, partial prey consumption (PPC) is a frequent occurrence. PPC may arise from physiological constraints to gut capacity or digestive rate. Alternatively, PPC may represent an optimal foraging strategy. Assessments that clearly distinguish between these causes are rare and have been conducted only for invertebrate species that are ambush predators with extra-intestinal digestion (e.g., wolf spiders). We present the first strong test for the cause of PPC in a cursorial vertebrate predator with intestinal digestion: wolves (Canis lupus) feeding on moose (Alces alces). Previous theoretical assessments indicate that if PPC represents an optimal foraging strategy and is not caused by physiological limitations, then mean carcass utilization is negatively correlated with mean kill rate and the utilization of individual carcasses is uncorrelated with time between kills. Wolves exhibit exactly this pattern. We explore how the typical portrayal of PPC by wolves has been not only misleading but also detrimental to conservation by promoting negative attitudes toward wolves.  相似文献   

9.
Summary Strike-induced chemosensory searching (SICS) was not detected experimentally in the cordylid lizard,Cordylus cordylus. Both components of SICS, a post-strike elevation in tongue-flick rate (PETF) and searching movements for attacked and released prey, were absent. The findings are consistent with previous data showing that PETF and/or SICS are lacking in all lizard families yet studied that forage primarily by ambush, but are present in actively foraging scleroglossan families and the herbivorous iguanian family Iguanidae. It is suggested that foraging behavior is a primary determinant of the presence or absence of SICS in lizards. Nevertheless, in most families in the two major clades, Iguania and Scleroglossa, the plesiomorphic foraging mode is retained. The findings agree with the prediction that SICS is absent in families lacking lingually mediated prey chemical discrimination (PCD), presumably due to selection against movement by ambush foragers that avoid being detected by either prey or predators because they remain motionless. Although PETF and SICS were absent, labial-licking and lingual movements similar to those observed after swallowing increased after biting prey, suggesting that the functions of these lingual movements may have been related to grooming. Locomotory movements did not increase following biting and appeared to represent avoidance of the experimenter.  相似文献   

10.
Organisms in natural habitats participate in complex ecological interactions that include competition, predation, and foraging. Under natural aquatic environmental conditions, amphibian larvae can simultaneously receive multiple signals from conspecifics, predators, and prey, implying that predator-induced morphological defenses can occur in prey and that prey-induced offensive morphological traits may develop in predators. Although multiple adaptive plasticity, such as inducible defenses and inducible offensive traits, can be expected to have not only ecological but also evolutionary implications, few empirical studies report on species having such plasticity. The broad-headed larval morph of Hynobius retardatus, which is induced by crowding with heterospecific anuran (Rana pirica) larvae, is a representative example of prey-induced polyphenism. The morph is one of two distinct morphs that have been identified in this species; the other is the typical morph. In this paper, we report that typical larval morphs of Hynobius can respond rapidly to a predatory environment and show conspicuous predator-induced plasticity of larval tail depth, but that broad-headed morphs cannot respond similarly to a predation threat. Our findings support the hypothesis that induction or maintenance of adaptive plasticity (e.g., predator-induced polyphenism) trades off against other adaptive plastic responses (e.g., prey-induced polyphenism). For a species to retain both an ability to forage for larger prey and an ability to more effectively resist predation makes sense in light of the range of environments that many salamander larvae experience in nature. Our results suggest that the salamander larvae clearly discriminate between cues from prey and those from predators and accurately respond to each cue; that is, they adjust their phenotype to the current environment.  相似文献   

11.
Summary Experimental tests were conducted to determine whether the ambush foraging iguanian lizard,Liolaemus zapallarensis, was capable of discriminating prey chemicals from control substances and whether this lizard exhibits strike-induced chemosensory searching (SICS) or its components after biting prey. The two components of SICS are a poststrike elevation in tongue-flicking rate (PETF) and apparent searching movements for relocation of prey that has been bitten, but released or escaped.Liolaemus zapallarensis failed to discriminate prey chemicals from control substances, but exhibited significant PETF lasting one minute. SICS was absent inL. zapallarensis because no post-strike movements were observed. The absence of both prey chemical discrimination and SICS exhibited byL. zapallarensis is common to all the insectivorous iguanians and ambush foraging lizards studied to date. However,L. zapallarensis is the first insectivorous iguanian species shown to exhibit PETF. The results suggest thatL. zapallarensis does not use the tongue for detection, identification, or relocation of prey while foraging. The possibility does remain thatL. zapallarensis may be capable of chemically identifying prey once the prey stimuli reach the oral cavity.  相似文献   

12.
Summary Behavioral resource depression occurs when the behavior of prey individuals changes in response to the presence of a predator, resulting in a reduction of the encounter rate of the predator with its prey. Here I present experimental evidence on the response of two species of gerbils (Gerbillus allenbyi and G. pyramidum) to the presence of barn owls. I conducted the experiments in a large aviary. Both gerbils responded to the presence of barn owl predators by foraging in fewer resource patches (seed trays) and by quitting foraged resource patches at a higher resource harvest rate (giving-up density of resource; GUD). This reduced the amount of time gerbils were exposed to owl predation, and hence the encounter rate of owls with gerbils, i.e., behavioral resource depression. Thus, the presence of owls imposes a foraging cost on gerbils due to risk of predation, and also on the owls themselves due to resource depression. I then examined how resource depression relaxed over time following exposure to owls. In the days following an encounter with the predator, the reduction in foraging activity for both gerbil species eased. Increasing numbers of trays were foraged each day, and GUDs in seed trays declined. The two gerbils differed in their rate of recovery, with G. pyramidum returning to prepredator levels of foraging after 1 or 2 nights and G. allenbyi taking 5 nights or longer. Interspecific differences in recovery rates may be based on differences between the species in vulnerability to predation and/or ability to detect the presence of predators. The differences in recovery rates may be due to optimal memory windows or decay rates, where differences between species are based on risk of predation or on how perceived risk changes with time since a predator was last encountered. Finally, differences between or among competitors in recovery from resource depression may provide foraging opportunities in time for the species which recover most quickly and may have implications for species coexistence.  相似文献   

13.
Abstract: Introduced predators can have pronounced effects on naïve prey species; thus, predator control is often essential for conservation of threatened native species. Complete eradication of the predator, although desirable, may be elusive in budget‐limited situations, whereas predator suppression is more feasible and may still achieve conservation goals. We used a stochastic predator–prey model based on a Lotka‐Volterra system to investigate the cost‐effectiveness of predator control to achieve prey conservation. We compared five control strategies: immediate eradication, removal of a constant number of predators (fixed‐number control), removal of a constant proportion of predators (fixed‐rate control), removal of predators that exceed a predetermined threshold (upper‐trigger harvest), and removal of predators whenever their population falls below a lower predetermined threshold (lower‐trigger harvest). We looked at the performance of these strategies when managers could always remove the full number of predators targeted by each strategy, subject to budget availability. Under this assumption immediate eradication reduced the threat to the prey population the most. We then examined the effect of reduced management success in meeting removal targets, assuming removal is more difficult at low predator densities. In this case there was a pronounced reduction in performance of the immediate eradication, fixed‐number, and lower‐trigger strategies. Although immediate eradication still yielded the highest expected minimum prey population size, upper‐trigger harvest yielded the lowest probability of prey extinction and the greatest return on investment (as measured by improvement in expected minimum population size per amount spent). Upper‐trigger harvest was relatively successful because it operated when predator density was highest, which is when predator removal targets can be more easily met and the effect of predators on the prey is most damaging. This suggests that controlling predators only when they are most abundant is the “best” strategy when financial resources are limited and eradication is unlikely.  相似文献   

14.
Chemical-mediated effects of predatory fish on chironomid larvae behaviour have been ignored so far. Sediment-dwelling chironomid larvae inhabit protective burrows from which they extend their bodies only to feed on deposited detritus and microalgae from the surrounding sediment. Here, we performed factorial laboratory experiments to study whether fish-borne chemical cues (kairomones) are responsible for behavioural trait changes of chironomid larvae, and whether chironomid larvae are able to assess the densities of fish predators and food resources and the trade-off between them. We exposed naïve Chironomus riparius larvae to the chemical presence of zero, one, and ten predator fish (Rutilus rutilus) and offered two resource levels (low food, high food) for each treatment. Kairomones induced significant inherent behavioural trait changes in chironomid larvae. During the first 120 min after exposing chironomids to fish-conditioned water, we found a significant increase in digging activity with increasing predator density. After 3 days of exposure, the deepest chironomid burrows were found in treatments with the highest predator density. Chironomid larvae were significantly able to adjust their foraging behaviour to different predator densities and food concentrations and trade off between them; that is, when fish predators were more abundant or when more food resources were available, the foraging activities of larvae were significantly reduced. Our data suggest that chemically mediated trait changes (burrowing and foraging behaviour) may cascade through the littoral food web.  相似文献   

15.
Capture success of many predator species has been shown to decrease with increasing prey group size and it is therefore suggested that predators should choose to attack stragglers and/or small groups. Predator choice in the laboratory has shown mixed results with some species preferentially attacking large groups and others preferring to attack stragglers over groups. Such predator choices have not been tested in the field. In our study we presented a binary choice between a shoal of guppies and a single guppy to predators in pools in the Arima river, Trinidad. We observed attacks in 11 different pools from a total of 53 predators (20 acara cichlids, Aequidens pulcher, 32 pike cichlids, Crenicichla frenata, and one wolf-fish, Hoplias malabaricus) and found that all predators showed a strong preference for the shoal of guppies in terms of both first choice and total number of attacks. We discuss the implications of these preferences with regards to predator–prey interactions.  相似文献   

16.
Summary.  Under laboratory conditions, the multicolored Asian lady beetle, Harmonia axyridis is well known as an intraguild predator of other ladybirds. However the real impact of this exotic species on native species was poorly investigated in the field. Because many ladybird species produce alkaloids as defensive compounds, we propose here a new method of intraguild predation monitoring in coccinellids based on alkaloid quantification by GC-MS. In laboratory experiments, adaline was unambiguously detected in fourth instar larvae of H. axyridis having ingested one egg or one first instar larva of Adalia bipunctata. Although prey alkaloids in the predator decreased with time, traces were still detected in pupae, exuviae and imagines of H. axyridis having ingested one prey when they were fourth instar larvae. Analysis of H. axyridis larvae collected in two potato fields shows for the first time in Europe the presence of exogenous alkaloids in 9 out of 28 individuals tested. This new method of intraguild predation detection could be used more widely to follow the interactions between predators and potential chemically defended insect preys.  相似文献   

17.
We examined the feeding ecology and niche segregation of the ten most abundant fish species caught by longline operations off eastern Australia between 1992 and 2006. Diets of 3,562 individuals were examined. Hook timer data were collected from a further 328 fish to examine feeding behaviour in relation to depth and time of day. Prey biomass was significantly related to predator species, predator length and year and latitude of capture. Although the fish examined fed on a mix of fish, squid and crustacea, fish dominated the diet of all species except small albacore (Thunnus alalunga) which fed mainly on crustacea and large swordfish (Xiphias gladius) and albacore which fed mainly on squid. Cannibalism was observed in lancetfish (Alepisaurus spp.). Multidimensional scaling identified three species groups based on their diet composition. One group consisted of yellowfin tuna (T. albacares), striped marlin (Tetrapturus audax) and dolphinfish (Coryphaena hippurus); a second group consisted of bigeye tuna (T. obesus), swordfish and albacore; and a third consisted of southern bluefin tuna (T. maccoyii) and blue shark (Prionace glauca). Of note was the separation of mako shark (Isurus oxyrhynchus) and lancetfish from all other predators. Prey length generally increased with increasing predator length although even large predators fed on a wide range of prey lengths including very small prey. Overall, differences in prey type and size, feeding times and depths were noted across the range of species examined to the extent that predators with overlapping prey, either in type or size, fed at different times of the diel period or at different depths. Taken together these data provide evidence for feeding niche segregation across the range of oceanic top predators examined.  相似文献   

18.
Understanding prey response to predators and their utilization of sensory cues to assess local predation risk is crucial in determining how predator avoidance strategies affect population demographics. This study examined the antipredator behaviors of two ecologically similar species of Caribbean coral reef fish, Coryphopterus glaucofraenum and Gnatholepis thompsoni, and characterized their responses to different reef predators. In laboratory assays, the two species of gobies were exposed to predator visual cues (native Nassau grouper predator vs. invasive lionfish predator), damage-released chemical cues from gobies, and combinations of these, along with appropriate controls. Behavioral responses indicate that the two prey species differ in their utilization of visual and chemical cues. Visual cues from predators were decisive for both species’ responses, demonstrating their relative importance in the sensory hierarchy, whereas damage-released cues were a source of information only for C. glaucofraenum. Both prey species could distinguish between native and invasive predators and subsequently altered their antipredator responses.  相似文献   

19.
Commonly used functional response models (Holling’s type I and type II models) assume that the encounter rate of a predator increases linearly with prey density, provided that the predator is searching for prey. In other other words, aN (a is the baseline encounter rate and N is prey density) describes the encounter rate. This study examined whether the models are adequate when predators and prey interact locally by using a spatially explicit individual based model because local interactions affect the spatial distribution of predators and prey, which also affects the encounter rate. Predators were assumed to possess a spatial perception range that influenced their foraging behavior (e.g., if a prey is in the perception range, the predator moves towards the prey). The effect of antipredator behavior by prey was also examined. The results suggest that prey and predator densities as well as handling time affect the baseline rate (i.e., parameter a) as opposed to the common assumption that the parameter is constant. The nature of model deviations depended on both the antipredator behavior and the predators’ perception range. Understanding these deviations is important as they qualitatively affect community dynamics.  相似文献   

20.
Summary. Colonies of two species of Metapone (M. madagascarica, M. new species.) were collected in Madagascar and established in laboratory nests. It could be demonstrated that both species are specialist predators of termites (Cryptotermes kirbyi). During hunting the ants sting the termites and thereby paralyze and preserve the prey alive. In this way prey can be stored in the ant nest for extended periods. During foraging and colony emigrations the ants lay chemical trails with poison gland secretions. Among the seven compounds identified in the venom only methyl pyrrole-2-carboxylate elicits trail following behavior in both Metapone species. Received 11 February 2002, accepted 23 February 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号