首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对白龙江沿岸农业种植、畜禽养殖等产业发展影响河流水质的问题,以甘肃省南部白龙江流域为研究对象,采用改进输出系数模型计算丰、平、枯水年等典型水文情景下流域内工业、农村生活垃圾、农村生活污水、畜禽养殖、城镇生活污水、城镇径流和农田径流等污染源污染负荷,基于InfoWorks ICM构建了白龙江水动力水质模型,模拟分析COD、TN、NH4+-N和TP等污染负荷分布特征,评估了最不利水文条件下白龙江水质污染风险,验证了该模型在流域水质污染模拟评估的适用性。研究结果表明,不同水文情景下污染物入河负荷主要来源存在显著差异,如丰水年和平水年农田径流是COD污染的主要来源,污染负荷分别达到1 382.56、1 058.98 t,而枯水年污染源主要是城镇径流。污染物负荷存在明显空间差异,研究区内子流域污染负荷空间分布不均匀,高污染负荷主要出现在中下游子流域。白龙江水质在汛期和非汛期差异较大,非汛期水质更差。通过模拟最不利水文情景(枯水年非汛期)发现,研究区内白龙江NH4+-N浓度最大位置出现在中下游,最高可达1.4...  相似文献   

2.
典型农业活动区土壤重金属污染特征及生态风险评价   总被引:7,自引:0,他引:7  
联合野外采样和室内分析,以典型农田土壤为研究对象,分析土壤中重金属Cr、Ni、Cu、Zn、Cd、Pb、As和Hg的含量及污染特征,并采用单因子污染指数法、内梅罗污染指数法及潜在生态危害指数法,对农田土壤进行生态风险评价,同时利用主成分因子分析法,提取出3主因子,分析土壤重金属可能来源。结果表明,研究区农田土壤各重金属含量均高于背景值,表层污染程度高于底层;各重金属单因子污染指数对应污染等级均为清洁,内梅罗污染指数为0.46,污染等级为安全。潜在生态风险评估结果显示,研究区土壤重金属污染的潜在生态风险危害程度为中等,各重金属的潜在生态危害程度依次为CdHgAsCuPbNiCrZn。主成分因子分析显示,研究区土壤中Hg、As和Cr主要由工业污染源贡献,土壤中Cd、Pb的污染主要来源于不合理的农业生产活动和居民生活,Ni、Zn和Cu与自然成土过程密切相关。综合评价表明,尽管研究区农田土壤目前重金属污染情况较轻,未达到警戒水平,但由于城市化的发展及长期现代化农业耕作活动造成农田土壤重金属的富集,因此,增强农田土壤安全性生产管理、严控土壤污染源与推行标准农业生产是十分必要的。  相似文献   

3.
针对农村面源污染日渐突出的问题,以农村饮用水源地黄沙港为例分析了农村面源污染的现状和成因,并从乡镇规划、生活污水处理工艺选择、畜禽水产业污染治理、农药化肥的施用、农业废弃物利用技术等方面提出防治措施。  相似文献   

4.
由于粗放的矿物采冶方式,矿区大量的砷扩散到周边农田中,会导致农田土壤砷污染问题。部分地区的砷背景值高,部分地区在农业生产活动中使用含砷化肥、农药等,均会加剧农田砷污染问题。植物提取修复是一种利用超富集植物将土壤污染物吸收并转移到植物地上部,待植物成熟收割以整体移除污染物的方法。与其他砷污染农田土壤的修复技术相比,植物提取修复技术具有无二次污染的特点。该技术辅以合理的农艺措施,可使土壤砷污染减量,并实现边生产边修复的目标,应用潜力广泛。分析了砷污染土壤植物提取修复技术的原理与现状;重点探讨了近年来强化砷植物提取修复的方法,包括修复植物的种质创新、超富集植物与根际微生物联合作用和农艺措施优化等几个方面;最后展望了农田土壤砷污染修复技术的未来研究方向,以期为该技术的进一步发展提供参考。  相似文献   

5.
军山湖流域农业非点源污染氮、磷入湖负荷估算   总被引:5,自引:0,他引:5  
参照国内外相关湖泊研究的方法,在开展流域调查的基础上,按照畜禽养殖污染、农业种植业流失、水产养殖污染和农村生活污染4类途径,结合各乡镇流域面积所占比例、污染源产生量、排放系数和流失系数等估算了军山湖流域农业非点源污染氮、磷的入湖负荷.结果表明,农业种植业流失和畜禽养殖污染是军山潮流域农业非点源污染入湖氮的主要来源,分别占入湖氮总量的37.5%和34.7%,其次为水产养殖污染,占23.2%;畜禽养殖污染是入湖磷的主要来源,占50.8%,其次为农业种植业流失和水产养殖污染,分别占24.4%和20.0%;农村生活污染对入湖氮、磷的贡献率最小.  相似文献   

6.
施肥过程中的污染控制   总被引:2,自引:0,他引:2  
农业生产造成的自身污染是一个不可忽略的环境问题,化肥施用不当造成植物体内硝酸盐含量增加以及水源的污染,城市活性污沁的农用处理,扩大了农田重金属污染的途径和范围,因此要提介科学种田,合肥施肥,以减轻对农业环境的污染。  相似文献   

7.
农田氮素淋溶损失影响因素及防治对策研究   总被引:21,自引:0,他引:21  
农田氮素损失是造成农业非点源污染的主要原因之一,其中由于大量施用氮肥引起的土壤氮素淋溶损失又是农田氮素损失的重要途径.因此,农田氮素损失研究已成为国际土壤化学和环境科学领域研究的热点问题之一.根据近年来国内外在农田氮素运移领域的研究成果,从降雨和灌溉、施肥状况、土壤性质、耕作方式、作物种类和种植方式等方面分析了影响农田氮素淋溶损失的主要因素,提出了改进施肥方式、优化氮肥管理、推广缓释氮肥以及改善土地利用方式等提高氮肥利用率、减小氮素淋溶损失的防治对策.  相似文献   

8.
三峡库区农田径流污染情势分析及对策   总被引:6,自引:0,他引:6  
根据三峡库区农田径流污染负荷输出定量化研究结果提示:“三峡库区农田径流污染较为严重。”我们对该区造成农田径流污染严重的因素进行了分析,结果表明:降雨冲刷时段集中,地形坡度有利于地表冲刷,农作物按排抗蚀能力差和化肥农药流失严重等是导致三峡库区农田径流污染严重的主要因素。我们还提出了减少三峡库区农田径流污染的防治对策。  相似文献   

9.
提出了一种基于子流域的控制单元划分方法,估算了独流减河流域农田种植、畜禽养殖、农村生活和水产养殖4个主要来源的农村非点源COD、TN、TP和氨氮的入河量,并进行空间特征解析。结果表明,2015年独流减河流域农村非点源COD、TN、TP和氨氮总入河量分别为5 036.20、1 373.94、231.75、573.73t,COD是流域中最主要的农村非点源污染物。4个来源对流域污染物入河量的贡献大小依次为农村生活、农田种植、水产养殖和畜禽养殖。空间特征解析结果表明,西部的控制单元1和控制单元2污染物入河量大,东北部的控制单元3、控制单元4包括控制单元5污染物入河量小。主要污染水系为子牙河水系、南运河水系、青静黄排水渠水系、运东排干水系等。  相似文献   

10.
农村环境问题已成为中国实现农业可持续发展、提高农民生活质量、建设和谐社会的重要制约因素,特别是在经济发达地区,农村环境问题尤为突出。文中以江苏省丹阳市为例,对发达地区农村环境问题进行深入分析,并从保障饮用水安全、加强农村生活污水和生活垃圾处理处置、减少农业面源污染、合理布局和控制工业污染源等方面提出对策建议。  相似文献   

11.
Noronha L  Siqueira A  Sreekesh S  Qureshy L  Kazi S 《Ambio》2002,31(4):295-302
This article is based on a larger case study that investigated the role of tourist induced and other population movements in causing coastal ecosystem change in Goa, India. It focuses especially upon agro-ecosystems locally known as khazan lands, and sand dunes, and how they are transformed to accommodate the needs of tourists and tourism. The effects of different forms of tourism upon land cover and land-use change is assessed. The research findings suggest that it is not population movements alone that cause ecosystem changes, but the changes in relations between people and ecosystems. This means that in some cases land cover has not changed as much as land use, and in other cases land cover has changed dramatically. Intermediary influences upon land use and land-cover change are also legal, political, and economic factors, particularly changes in property rights.  相似文献   

12.
Applying sustainability at an operational level requires understanding the linkages between socioeconomic and natural systems. We identified linkages in a case study of the Lake St. Clair (LSC) region, part of the Laurentian Great Lakes system. Our research phases included: (1) investigating and revising existing coupled human and natural systems frameworks to develop a framework for this case study; (2) testing and refining the framework by hosting a 1-day stakeholder workshop and (3) creating a causal loop diagram (CLD) to illustrate the relationships among the systems’ key components. With stakeholder assistance, we identified four interrelated pathways that include water use and discharge, land use, tourism and shipping that impact the ecological condition of LSC. The interrelationships between the pathways of water use and tourism are further illustrated by a CLD with several feedback loops. We suggest that this holistic approach can be applied to other case studies and inspire the development of dynamic models capable of informing decision making for sustainability.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0432-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
Traditional, pre-industrial farming was adapted to the natural environment—topography, geology, hydrology, climate, and biota. Traditional land use systems are still to be traced in Scandinavia as an “infield/outland landscape”, and in Japan as a “Satoyama landscape.” There are obvious similarities and differences in land use—the main difference being that pasturing of cattle and sheep has been less important in Japan. These land use systems can be traced back to early sedentary settlements 1500–2500 years ago. In both regions, traditional management almost ceased in the mid-twentieth century leading to afforestation and decreased biological diversity. Today, there is in Japan a growing movement for landscape restoration and promotion of a sustainable living countryside based on local agrarian and forestry production, local energy, tourism, etc. With this background, the so-called Satoyama Initiative has been organized and introduced as a global socio-ecological project with ecosystem services for human well-being.  相似文献   

14.
The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was found that total nitrogen (TN) and total phosphorous (TP) in upland were more sensitive to NPS pollutants loading than in paddy fields. The results of this study have implications for management of the TGR to reduce the loading of NPS pollutants into downstream water bodies.  相似文献   

15.
Land use pattern is an effective reflection of anthropic activities, which are primarily responsible for water quality deterioration. A detailed understanding of relationship between water quality and land use is critical for effective land use management to improve water quality. Linear mixed effects and multiple regression models were applied to water quality data collected from 2003 to 2010 from 36 stations in the Huai River basin together with topography and climate data, to characterize the land use impacts on water quality and their spatial scale and seasonal dependence. The results indicated that the influence of land use categories on specific water quality parameter was multiple and varied with spatial scales and seasons. Land use exhibited strongest association with dissolved oxygen (DO) and ammonia nitrogen (NH3-N) concentrations at entire watershed scale and with total phosphorus (TP) and fluoride concentrations at finer scales. However, the spatial scale, at which land use exerted strongest influence on instream chemical oxygen demand (COD) and biochemical oxygen demand (BOD) levels, varied with seasons. In addition, land use composition was responsible for the seasonal pattern observed in contaminant concentrations. COD, NH3-N, and fluoride generally peaked during dry seasons in highly urbanized regions and during rainy seasons in less urbanized regions. High proportion of agricultural and rural areas was associated with high nutrient contamination risk during spring. The results highlight the spatial scale and seasonal dependence of land use impacts on water quality and can provide scientific basis for scale-specific land management and seasonal contamination control.  相似文献   

16.
International trade in meat: the tip of the pork chop   总被引:4,自引:0,他引:4  
This paper provides an original account of global land, water, and nitrogen use in support of industrialized livestock production and trade, with emphasis on two of the fastest-growing sectors, pork and poultry. Our analysis focuses on trade in feed and animal products, using a new model that calculates the amount of "virtual" nitrogen, water, and land used in production but not embedded in the product. We show how key meat-importing countries, such as Japan, benefit from "virtual" trade in land, water, and nitrogen, and how key meat-exporting countries, such as Brazil, provide these resources without accounting for their true environmental cost. Results show that Japan's pig and chicken meat imports embody the virtual equivalent of 50% of Japan's total arable land, and half of Japan's virtual nitrogen total is lost in the US. Trade links with China are responsible for 15% of the virtual nitrogen left behind in Brazil due to feed and meat exports, and 20% of Brazil's area is used to grow soybean exports. The complexity of trade in meat, feed, water, and nitrogen is illustrated by the dual roles of the US and The Netherlands as both importers and exporters of meat. Mitigation of environmental damage from industrialized livestock production and trade depends on a combination of direct-pricing strategies, regulatory approaches, and use of best management practices. Our analysis indicates that increased water- and nitrogen-use efficiency and land conservation resulting from these measures could significantly reduce resource costs.  相似文献   

17.
土地利用/土地覆被变化对区域生态环境的影响   总被引:8,自引:0,他引:8  
土地利用/ 土地覆被变化对区域生态环境的影响是土地利用/ 土地覆被变化研究的重要内容。本文分析了土地利用/ 土地覆被变化对区域气候、土壤、水量和水质的影响。土地利用/ 土地覆被变化通过改变地表发射率、温室气体和痕量气体的含量影响区域气候;土地利用/土地覆被变化影响着能量交换、水交换、侵蚀与堆积、生物循环和作物生产等土壤主要生态过程,不同土地利用方式和土地覆被类型的空间组合影响着土壤养分的迁移规律;土地利用/ 土地覆被变化对水质的影响主要是通过非点源污染途径,许多非点源污染来源都同土地利用/土地覆被变化紧密联系。文中还探讨了由于人类不合理的土地利用造成的土壤侵蚀、土地退化、水资源短缺、海水入侵等生态环境问题。  相似文献   

18.
Orchids are diverse, occur in a wide range of habitats and dominate threatened species lists, but which orchids are threatened, where and by what? Using the International Union for Conservation of Nature Red List, we assessed the range and diversity of threats to orchids globally including identifying four threat syndromes: (1) terrestrial orchids in forests that are endemic to a country and threatened by illegal collecting; (2) orchids threatened by climate change, pollution, transportation and disturbance/development for tourism, and recreation activities, often in East Asia; (3) epiphytic orchids in Sub-Saharan Africa including Madagascar with diverse threats; and (4) South and Southeast Asia orchids threatened by land clearing for shifting agriculture. Despite limitations in the Red List data, the results highlight how conservation efforts can focus on clusters of co-occurring threats in regions while remaining aware of the trifecta of broad threats from plant collecting, land clearing and climate change.  相似文献   

19.
Exploring how water quality and land use shape the benthic macroinvertebrate community composition is of widespread interest in biodiversity conservation and environmental management. In this study, we investigated the structures of benthic macroinvertebrate assemblages and their environmental controls in terms of water quality and riparian land use in the Jinshui River, China. We carried out three campaigns including wet season (August 2009), dry season (November 2009), and normal season (April 2010) based on the hydrological regime in Jinshui basin. The result showed that macroinvertebrate assemblage variations were better explained by water quality factors than land use based on variance partitioning procedure. The land use of 2 km upstream from the sampling sites had explained more variation than that of the whole riparian zone in upstream catchment on macroinvertebrate community, and land use of 2 km upstream also had more interactions with water quality. Canonical correspondence analysis (CCA) indicated that the elements or nutrient of magnesium (Mn), selenium (Se), strontium (Sr), silicon (Si), dissolved inorganic nitrogen (DN), sulfur (S), total organic carbon (TOC), and total nitrogen (TN) in water exhibited a strong relationship with macroinvertebrate assemblages. However, the variance in water quality explained by land use was lower than that explained by water quality in rivers using redundancy analysis. Our study suggested that proximate factors (i.e., water quality) were more important to interpret the macroinvertebrate community compared to ultimate factors (i.e., land use) for macroinvertebrate assemblages in river system.  相似文献   

20.
Watershed investment programs frequently use land cover as a proxy for water-based ecosystem services, an approach based on assumed relationships between land cover and hydrologic outcomes. Water flows are rarely quantified, and unanticipated results are common, suggesting land cover alone is not a reliable proxy for water services. We argue that managing key hydrologic fluxes at the site of intervention is more effective than promoting particular land-cover types. Moving beyond land cover proxies to a focus on hydrologic fluxes requires that programs (1) identify the specific water service of interest and associated hydrologic flux; (2) account for structural and ecological characteristics of the relevant land cover; and, (3) determine key mediators of the target hydrologic flux. Using examples from the tropics, we illustrate how this conceptual framework can clarify interventions with a higher probability of delivering desired water services than with land cover as a proxy.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0578-8) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号