首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

From November 1995 to October 1996 and from October 1997 to September 1998, samples of wet precipitation, cloud water, as well as of reactive gases and particulate matter, were collected at three elevational levels (920 m, 1280 m and 1758 m a.s.l.) in Achenkirch, Austria. The samples were analysed for ammonium and nitrate in wet precipitation and in cloud water, for ammonia, nitric acid and nitrogen dioxide in the gas phase and for particulate ammonium and particulate nitrate in aerosol. Total nitrogen deposition was calculated combining measured concentrations in wet, dry and occult depositions with the corresponding deposition fluxes. Two multilayer deposition models were used for the calculation of dry and occult deposition. The total nitrogen input in 1995/96 was estimated to be 29 kg N ha−1a−1 at the Christlumkopf station (1758 m), 20 kg N ha−1a−1 at the Christlumalm station (1280 m) and 28 kg N ha−1a−1 at the Talboden station (930 m). Respective data for the 1997/98 observation period were 31 kg N ha−1a−1 at the Christlumkopf station (1758 m) and 18 kg N ha−1a−1 at the Mühleggerköpfl station (920 m). Critical Loads of nitrogen for coniferous forests were exceeded significantly near-source regions represented by areas of intense agricultural use and at high elevation sites.

  相似文献   

2.

The intensive investigation site ‘Mühleggerköpfl’ in the North Tyrolean Limestone Alps can be classified as a clean-air area site. The mean concentrations of NOx are far below the effect-related limit value of the WHO (30 μg NOx m−3). The gravitational depositions in the open field (bulk deposition) ranged from 10.8 to 14.7 kg N ha−1 a−1 (throughfall: 11.3 to 12.3 kg N ha−1 a−1) in the measuring years 1998 to 2000. Compared to these data, depositions in other forested areas of the Austrian Alps amounted to up to 30 kg N ha−1 a−1. The gravitational depositions (bulk deposition) alone - without considering dry and occult deposition - slightly exceeded the lower limit of Critical Loads for coniferous and deciduous forests (> 10 kg N ha−1 a−1), but were below the Critical Loads for calcareous forests (15–20 kg N ha−1 a−1).

  相似文献   

3.
Gaseous methane (CH4) emissions from a swine waste holding lagoon were determined periodically during the year. Micrometeorological techniques were used in order that emission rates from the lagoon were measured under ambient conditions with little disturbance to the natural environment. During the cold winter measurement period, CH4 fluxes were linearly related to lagoon water temperature below 22°C (r=0.87). During warmer measurement periods, both water and air temperatures and windspeed affected emissions rates. In general, flux rates followed a diurnal pattern with greater fluxes during the day when both temperature and windspeed were greatest. Mathematical models using air and water temperature and windspeed factors could explain 47 to 75% of the variation in fluxes. Daily emission rates ranged from 1 to 500 kg CH4 ha−1 d−1. The average flux for the year was 52.3 kg CH4 ha−1 d−1 which corresponded to about 5.6 kg CH4 animal−1 yr−1 from the primary lagoon.  相似文献   

4.

The water balance for the site Mühleggerköpfl in the North Tyrolean Limestone Alps has been established to a soil depth of 50 cm. The evaporation amounts to 42% and deep percolation is 58 % of the precipitation. The surface runoff was negligible and therefore the according nitrate fluxes as well. Soil water analysis revealed mean nitrate concentrations of 3 to 15 mg NO3 L−1, depending on soil depth. The nitrate concentrations at 50 cm soil depth and the associated percolation rates led to NO2 N outputs of 15.9 kg NO3 N ha−1 in the year 1999 and 7.9 kg NO3 N ha−1 in the year 2000.

  相似文献   

5.
Due to the high temporal and spatial variability of N2O fluxes, estimates of N2O emission from temperate forest ecosystems are still highly uncertain, particularly at larger scales. Although highest N2O emissions with up to 7.0 kg N ha−1 yr−1 were mainly reported for soils affected by stagnant water, most of the reported gas flux measurements were performed at forest sites with well-aerated soils yielding mostly to low mean annual emission rates less than 1.0 kg N ha−1 yr−1. This study compares N2O fluxes from upland (Cambisols) and temporally water-logged (Gleysols, Histosols) soils of the Central Black Forest (South-West Germany) over a period of 2 yr. Mean annual N2O fluxes from investigated soils ranged between 0.2 and 3.9 kg N ha−1 yr−1. The fluxes showed a large variability between the different soil types. Emissions could be clearly ranked in the following order: Cambisols (0.26–0.75 kg N ha−1 yr−1)<Gleysols (1.37–2.68 kg N ha−1 yr−1)<Histosol (3.66–3.95 kg N ha−1 yr−1). Although the Cambisols cover two-thirds of the investigated area, only about half of the overall N2O is emitted from this soil type. Therefore, regional or national N2O fluxes from temperate forest soils are underestimated if soils characterised by intermediate aeration conditions are disregarded.  相似文献   

6.
In order to quantify the atmospheric nitrate and sulfate deposition and to investigate factors related to the variability of deposition during 1983 and 1984, precipitation samples from five different meteorological stations in Schleswig-Holstein (Northern Germany) were collected in weekly intervals, using the bulk-sample method. The average element depositions in kg ha−1 a−1 were: 20 for S and 5.5 for N in List (North Sea Island Sylt) and Schleswig, 12 for S and 4.7 for N in Kiel, 16 for S and 4.3 for N in Luebeck and 18 for S and 4.2 for N in Quickborn near Hamburg.N and S concentrations showed a close relationship to the amount of precipitation and the following functions for the estimation of nitrate-N and sulfate-S deposition in Schleswig-Holstein could be derived: (x = precipitation in mm a−1, y = N or S deposition in kg ha−1 a−1) NO3-N: y = 0.003x + 2.29; SO4−S: y = 0.014x + 4.71. According to these relationships most of the element deposition occurred during atmospheric conditions of predominating winds from the west. Especially in the case of S, atmospheric deposition is the only external source of S supply for plants on many agricultural soils. Sometimes the low sulfur input is not sufficient to cover the requirements of agricultural crops in Schleswig-Holstein. Due to the negative S balance in many soils, future increase of S deficiency is expected.  相似文献   

7.
The aim of the study was to establish whether the repeated application of sewage sludge to an acid forest soil (Dystric Cambisol) would lead to short-term groundwater contamination. Sludge was applied at four loading rates (0, 2.4, 17 and 60 Mg ha−1) in two consecutive years and leachates were analysed. Heavy metal inputs to soils at the lowest dose were below EC regulations but, at higher doses, limits for Zn, Cd, Cr and Ni were exceeded. Repeated application of sludge at 60 Mg ha−1 resulted in significantly (P < 0.05) higher concentrations of Zn, Cd, Cr and Ni in the leachates than with other treatments. The drinking water standards for Cd and Ni were surpassed in all treatments. Control plots were contaminated by groundwater flow despite the existence of buffer zones between plots. This complicated interpretation of the results, highlighting the importance of careful design of this type of experiment.  相似文献   

8.
A field experiment was conducted in a rice–winter wheat rotation agroecosystem to quantify the direct emission of N2O for synthetic N fertilizer and crop residue application in the 2002–2003 annual cycle. There was an increase in N2O emission accompanying synthetic N fertilizer application. Fertilizer-induced emission factor for N2O (FIE) averaged 1.08% for the rice season, 1.49% for the winter wheat season and 1.26% for the whole annual rotation cycle. The annual background emission of N2O totaled 4.81 kg N2O–N ha−1, consisting of 1.24 kg N2O–N ha−1 for rice, 3.11 kg N2O–N ha−1 for wheat seasons. When crop residue and synthetic N fertilizer were both applied in the fields, crop residue-induced emission factor for N2O (RIE) was estimated as well. When crop residue was retained at the rate of 2.25 and 4.50 t ha−1 for each season, the RIE averaged 0.64% and 0.27% for the whole annual rotation cycle, respectively. Based on available multi-year data of N2O emissions over the whole rice–wheat rotation cycle at 3 sites in southeast China, the FIE averaged 1.02% for the rice season, 1.65% for the wheat season. On the whole annual cycle, the FIE for N2O ranged from 1.05% to 1.45%, with an average of 1.25%. Annual background emission of N2O averaged 4.25 kg ha−1, ranging from 3.62 to 4.87 kg ha−1. It is estimated that annual N2O emission in paddy rice-based agroecosystem amounts to 169 Gg N2O–N in China, accounting for 26–60% of the reported estimates of total emission from croplands in China.  相似文献   

9.
Applying manure compost not only results in zinc accumulation in the soil but also causes an increase in zinc mobility and enhances zinc leaching. In this study, the physical and chemical characteristics of zinc, zinc profiles, and zinc balance were investigated to characterise the fate of zinc in fields where the quality and amount of pig manure compost applied have been known for 13 years. Moreover, we determined zinc fractionation in both 0.1 mol L?1HCl-soluble (mobile) and -insoluble (immobile) fractions. Adsorption of zinc in the soil was enhanced with increasing total carbon content following the application of pig manure compost. The 159.6 mg ha?1 year?1manure applied plot (triplicate) exceeded the Japanese regulatory level after only 6 years of applying pig manure compost, whereas the 53.2 mg ha?1 year?1 manure applied plot (standard) reached the regulatory level after 13 years. The zinc loads in the plots were 17.0 and 5.6 kg ha?1 year?1, respectively. However, 5.9 % and 17.2 % of the zinc loaded in the standard and the triplicate pig manure compost applied plots, respectively, were estimated to be lost from the plough layer. Based on the vertical distribution of mobile and immobile zinc content, a higher rate of applied manure compost caused an increase in the mobile zinc fraction to a depth of 40 cm. Although the adsorption capacity of zinc was enhanced following the application of pig manure compost, a greater amount of mobile zinc could move downward through the manure amended soil than through non manure-amended soil.  相似文献   

10.
Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg°) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg° over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from ∼20 (winter) to ∼40 (summer) ng m−2 h−1. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg° from the underlying water surface (∼1–2 ng m−2 h−1) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO2 flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg° flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg° emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg° is the underlying sediments. The pattern of Hg° fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.  相似文献   

11.

Radiation use efficiency (RUE) is considered critical for calculation of crop yield. The crop productivity can be improved by increasing the interception of solar radiation and maintaining higher RUE for plants. Irrigation water and nitrogen (N) supply are the main limiting factors for RUE in maize (Zea mays L.) across the semi-arid environments. Field experiments were conducted during two consecutive growing seasons (2009–2010) to optimize RUE in relation to N application timings and rates with varying irrigation water management practices. In experiment 1, three N application timings were made, while in experiment 2, three possible water management practices were used. In both experiments, five N rates (100, 150, 200, 250, and 300 kg N ha−1) were applied to evaluate the effects of irrigation water and N on cumulative photosynthetic active radiation (PARi), dry matter RUE (RUEDM), and grain yield RUE (RUEGY). The results demonstrated that cumulative PARi and RUEs were not constant during the plant growth under varying the nutrients. The water and N significantly influenced cumulative PARi and RUEs during the both growing seasons. In experiment 1, the maximum cumulative PARi was observed by application of 250 kg N ha−1 in three splits (1/3 N at V2, 1/3 N at V16, and 1/3 N at R1 stage), and the highest RUEDM was achieved by the application of 300 kg N ha−1. However, the highest RUEGY was observed by application of 250 kg N ha−1. In experiment 2, the maximum cumulative PARi was attained at normal irrigation regime with 250 kg N ha−1, while the highest RUEDM and RUEGY were recorded at normal irrigation regime with the application of 300 kg N ha−1. The regression analysis showed significant and positive correlation of RUEGY with grain yield. Therefore, optimum water and N doses are important for attaining higher RUE, which may enhance maize grain yield semi-arid environment; this may be considered in formulating good agricultural practices for the environmental conditions resembling to those of this study.

  相似文献   

12.
Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, α-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species’ emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505 g ha−1 h−1 (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring; respectively). Emissions of isoprene ranged from 0.3 to 505 g ha−1 h−1 (macchia in Italy in late spring and autumn; and riverside in Spain in late spring; respectively) and α-pinene emissions ranged from 0.51 to 52.92 g ha−1 h−1 (garrigue in Spain in late spring; and forest in France in autumn; respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Genista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers.  相似文献   

13.

Microorganisms are responsible for the mineralisation of organic nitrogen in soils. NH +4 can be further oxidised to NO3 during nitrification and NO3 can be reduced to gaseous nitrogen compounds during denitrification. During both processes, nitrous oxide (N2O), which is known as greenhouse gas, can be lost from the ecosystem.

The aim of this study was to quantify N2O emissions and the internal microbial N cycle including net N mineralisation and net nitrification in a montane forest ecosystem in the North Tyrolean Limestone Alps during an 18-month measurement period and to estimate the importance of these fluxes in comparison with other components of the N cycle. Gas samples were taken every 2 weeks using the closed chamber method. Additionally, CO2 emission rates were measured to estimate soil respiration activity. Net mineralisation and net nitrification rates were determined by the buried bag method every month. Ion exchange resin bags were used to determine the N availability in the root zone.

Mean N2O emission rate was 0.9 kg N haa, which corresponds to 5 % of the N deposited in the forest ecosystem. The main influencing factors were air and soil temperature and NO 3 accumulated on the ion exchange resin bags. In the course of net ammonification, 14 kg NH +4 −N ha were produced per year. About the same amount of NO 3 −N was formed during nitrification, indicating a rather complete nitrification going on at the site. NO t-3 concentrations found on the ion exchange resin bags were about 3 times as high as NO t-3 produced during net nitrification, indicating substantial NO t-3 immobilisation. The results of this study indicate significant nitrification activities taking place at the Mühleggerköpfl.

  相似文献   

14.
Micrometeorological flux-gradient and nocturnal boundary layer methods were combined with Fourier transform infrared (FTIR) spectroscopy for high-precision trace gas analysis to measure fluxes of the trace gases CO2, CH4 and N2O between agricultural fields and the atmosphere. The FTIR measurements were fully automated and routinely obtained a precision of 0.1–0.2% for several weeks during a measurement campaign in October 1995. In flux-gradient measurements, vertical profiles of the trace gases were measured every 30 min from the ground to 22 m. When combined with independent micrometeorological measurements of water vapour fluxes, trace gas fluxes from the underlying surface could be determined. In the nocturnal boundary layer method the rate of change in mass storage in the 0–22 m layer was combined with fluxes measured at 22 m to estimate surface fluxes. Daytime fluxes for CO2 were −0.78±0.40 (1σ) mg CO2 m−2 s−1. Daytime fluxes of N2O and CH4 were very small and difficult to measure reliably using the flux-gradient technique, despite the high precision of the concentration measurements. Mean daytime flux for N2O was 17±48 ng N m−2 s−1, while the corresponding flux for CH4 was 47±410 ng CH4 m−2 s−1. The mean nighttime flux of CO2 estimated using the nocturnal boundary layer method was +0.15±0.05 mg CO2 m−2 s−1, in good agreement with chamber measurements of respiration rates. Nighttime fluxes of CH4 and N2O from the nocturnal boundary layer method were 109±69 ng CH4 m−2 s−1 and 2±3.2 ng N m−2 s−1, respectively, in good agreement with chamber measurements and inventory estimates based on the sheep and cattle stocking rates in the region. The suitability of FTIR-based methods for long term monitoring of spatially and temporally averaged flux measurements is discussed.  相似文献   

15.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

16.
Five weeks of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle bound mercury (Hgp) concentrations as well as fluxes of GEM were measured at Maryhill, Ontario, Canada above a biosolids amended field. The study occurred during the autumn of 2004 (October–November) to capture the effects of cool weather conditions on the behaviour of mercury in the atmosphere. The initial concentration of total mercury (Hg) in the amended soil was relatively low (0.4 μg g−1±10%).A micrometeorological approach was used to infer the flux of GEM using a continuous two-level sampling system with inlets at 0.40 and 1.25 m above the soil surface to measure the GEM concentration gradient. The required turbulent transfer coefficients were derived from meteorological parameters measured on site. The average GEM flux over the study was 0.1±0.2 ng m−2 h−1(±one standard deviation). The highest averaged hourly GEM fluxes occurred when the averaged net radiation was highest, although the slight diurnal patterns observed were not statistically significant for the complete flux data series. GEM emission fluxes responded to various local events including the passage of a cold front when the flux increased to 2 ng m−2 h−1 and during a biosolids application event at an adjacent field when depositional fluxes peaked at −3 ng m−2 h−1. Three substantial rain events during the study kept the surface soil moisture near field capacity and only slightly increased the GEM flux. Average concentrations of RGM (2.3±3.0 pg m−3), Hgp (3.0±6.2 pg m−3) and GEM (1.8±0.2 ng m−3) remained relatively constant throughout the study except when specific local events resulted in elevated concentrations. The application of biosolids to an adjacent field produced large increases in Hgp (25.8 pg m−3) and RGM (21.7 pg m−3) concentrations only when the wind aligned to impact the experimental equipment. Harvest events (corn) in adjacent fields also corresponded to higher concentrations of GEM and Hgp but with no elevated peaks in RGM concentrations. Diurnal patterns were not statistically significant for RGM and Hgp at Maryhill.  相似文献   

17.
Isoprene fluxes from a Salix viminalis (willow) plantation in western Sweden were measured using the relaxed eddy accumulation (REA) technique. Fluxes of up to 0.23 μg m−2 s−1 could be observed. A standard emission factor at 303 K and a PAR flux of 1000 μ mol m−2 s−1 was estimated to 0.98 μg m−2 s−1 by using the G93 algorithm. The chemistry of an air parcel passing over a willow coppice plantation was investigated utilising a Lagrangian box model in which the measured isoprene fluxes were used as input data. Dispersion after the field was accounted for by a procedure based on the Gaussian plume model. The calculations indicate that, in most cases, the isoprene emissions have a small effect on the local air quality.  相似文献   

18.
Agricultural soils may account for 10% of anthropogenic emissions of NO, a precursor of tropospheric ozone with potential impacts on air quality and global warming. However, the estimation of this biogenic source strength and its relationships to crop management is still challenging because of the spatial and temporal variability of the NO fluxes.Here, we present a combination of new laboratory- and field-scale methods to characterise NO emissions and single out the effects of environmental drivers.First, NO fluxes were continuously monitored over the growing season of a maize-cropped field located near Paris (France), using 6 automatic chambers. Mineral fertilizer nitrogen was applied from May to October 2005. An additional field experiment was carried out in October to test the effects of N fertilizer form on the NO emissions. The automatic chambers were designed to measure simultaneously the NO and N2O gases. Laboratory measurements were carried out in parallel using soil cores sampled at same site to test the response of NO fluxes to varying soil N–NH4 and water contents, and temperatures. The effects of soil core thickness were also analysed.The highest NO fluxes occurred during the first 5 weeks following fertilizer application. The cumulative loss of NO–N over the growing season was estimated at 1.5 kg N ha?1, i.e. 1.1% of the N fertilizer dose (140 kg N ha?1). All rainfall events induced NO peak fluxes, whose magnitude decreased over time in relation to the decline of soil inorganic N. In October, NO emissions were enhanced with ammonium forms of fertilizer N. Conversely, the application of nitrate-based fertilizers did not significantly increase NO emissions compared to an unfertilized control. The results of the subsequent laboratory experiments were in accordance with the field observations in magnitude and time variations. NO emissions were maximum with a water soil content of 15% (w w?1), and with a NH4–N content of 180 mg NH4–N kg soil?1. The response of NO fluxes to soil temperature was fitted with two exponential functions, involving a Q10 of 2.0 below 20 °C and a Q10 of 1.4 above. Field and laboratory experiments indicated that most of the NO fluxes originated from the top 10 cm of soil. The characterisation of this layer in terms of mean temperature, NH4 and water contents is thus paramount to explaining the variations of NO fluxes.  相似文献   

19.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

20.
Abstract

Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing ~10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing ~10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, ~0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, ~20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from ?50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号