首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The coupling products (CPs), which were formed via the peroxosulfate catalyzed oxidation of pentachlorophenol (PCP) with iron(III)-tetrakis(sulfonatophenyl)porphyrin (Fe(III)-TPPS) in the presence of hydroxypropyl-β -cyclodextrin (HP-β -CD) or HP-γ -CD, were separated by ultrafiltration from the reaction mixture. When the percentages of chlorine species in the reaction mixture were calculated from the concentrations of organic chlorine in the reaction mixture and CPs, 10–25% of chlorine species in the reaction mixture was organic chlorine that was incorporated into CDs. Analyses of the CPs by pyrolysis-GC/MS (Py-GC/MS) and 13C NMR showed that the PCP-derived products were covalently incorporated into the CDs. To evaluate the acute toxicity of the CPs, a Microtox® test was examined. Toxicities of the CPs were reduced slightly, compared to the controls (PCP alone and PCP + reaction blanks). In the reaction blanks, mesaconic acid (MA) moieties were detected as a result of the oxidation of CDs in the absence of PCP. Thus, factors in the toxicities, detected in the CPs, can be attributed to the oxidation products derived from CDs, such as MA, as well as the PCP-derived products incorporated into the CDs.  相似文献   

2.
Conifer needles are used for the monitoring of atmospheric persistent organic pollutants. The objective of the present study was to develop a method for the detection of airborne chlorinated paraffins (CPs) using spruce needles as a passive sampler. The method is based on liquid extraction of the cuticular wax layer followed by chromatographic fractionation and detection of CPs using two different GCMS techniques. Total CP concentrations (sum of short (SCCP), medium (MCCP) and long chain CPs (LCCP)) were determined by EI-MS/MS. SCCP and MCCP levels as well as congener group patterns (n-alkane chain length, chlorine content) could be evaluated using ECNI-LRMS. For the first time, data on environmental airborne CPs on spruce needles taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) are presented providing evidence that spruce needles are a suitable passive sampling system for the monitoring of atmospheric CPs.  相似文献   

3.
Cyclodextrins (CDs) can improve the apparent solubility and bioavailability of a variety of organic compounds through the formation of inclusion complexes; accordingly, they are suitable for application in innovative remediation technologies of contaminated soils. However, the different interactions in the tertiary system CD/contaminant/soil matrix can affect the bioavailability of the inclusion complex through the possible sorption of CD and CD complex in the soil matrix, as well as with the potential of the sorbed CD to form the complex, concurrent with the desorption processes. This work focuses in changes produced by three different CDs in soil sorption-desorption processes of chlorpyrifos (CPF), diazinon (DZN), and chlorothalonil (CTL), and their major degradation products, 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidinol, and hydroxy-chlorothalonil (OH-CTL). Cyclodextrins used were β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Mβ-CD), and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The studied soils belong to the orders Andisol, Ultisol, and Mollisol with different organic matter contents, mineral composition, and pH. The apparent sorption constants were significantly lower for the three pesticides in the presence of all CDs. The highest displacement of sorption equilibria was produced by the influence of Mβ-CD, with the most pronounced effect for CPF, a pesticide strongly sorbed on soils. The same was obtained for TCP and OH-CTL, highlighting the need to assess the risk of generating higher levels of groundwater contamination with polar metabolites if degradation rates are not controlled. The highest desorption efficiency was obtained for the systems CPF-β-CD, DZN-Mβ-CD, and CTL-Mβ-CD. Since the degree of adsorption of the complex is relevant to obtain an increase in the bioavailability of the contaminant, a distribution coefficient for the complexed pesticide in all CD–soil–pesticide system was estimated by using the apparent sorption coefficients, the stability constant for each CD–pesticide complex, and the distribution coefficients of free pesticide.  相似文献   

4.
BACKGROUND AND AIMS: Polychlorinated diphenyl ethers (PCDEs), which are among the members of persistent organic pollutants, and PCDEs have been determined in a number of environmental samples. The main possible sources are the technical production of chlorinated phenols and all processes of incomplete combustion. PCDEs were observed in the fly ash from a municipal waste incinerator (MWI). It was speculated that the condensation of chlorophenols with chlorobenzenes occurred via PCDEs to form polychlorinated dibenzofurans (PCDFs). Nevertheless, PCDEs formation from condensation of chlorophenols with chlorobenzenes has not been confirmed by experimental observation. The objective of this paper is to investigate the formation mechanism of PCDEs from the condensation of chlorophenols with chlorobenzenes. The results are expected to be helpful in understanding the formation of PCDEs and in controlling and abating PCDEs emissions from MWI. METHODS: The pyrolysis of pentachlorophenol (PCP) and/or polychlorobenzenes (PCBz) was carried out in a sealed glass tube. The reaction products were extracted and purified with K2CO3 solution. The samples were concentrated and then cleaned up on an alumina column. GC/MS was used for identification and quantification of reaction products. RESULTS AND DISCUSSION: The results showed that the pyrolysis of hexachlorobenzene (HCB) at 340 degrees C for 6 h led to the formation of decachlorodiphenyl ether (DCDE) (2.41 microg/mg) and octachlorodibenzo-p-dioxins (OCDD) (0.24 micropg/mg), while the pyrolysis of PCP yielded DCDE (13.08 microg/mg) and OCDD (180.13 microg/mg). In addition, the amount of DCDE formation from the pyrolysis of the mixture of PCP and HCB was 4.65 times higher than the total amount of DCDE formation from the pyrolysis of HCB and PCP, respectively. This indicated that PCP and HCB were prone to condensation and formation of DCDE. DCDE was the main congener of PCDEs from condensation of PCP with HCB at 340, 400 and 450 degrees C. A small amount of nonachlorodiphenyl ether (NCDE) was formed by dechlorination reaction at 450 degrees C. The condensation of PCP with 1,2,4,5-tetrachlorobenzene (Cl4Bz) formed 2,2',3,4,4',5,5',6-octachlorodiphenyl ether (OCDE). Small amounts of heptachlorodiphenyl ether (HpCDE) and hexachlorodiphenyl ether (HxCDE) were detected at 450 degrees C. Meanwhile, polychlorinated dibenzo-p-dioxins (PCDDs) and PCDFs were detected from the condensation of PCP and PCBz. CONCLUSIONS: Experimental studies clarified the behavior of the formation of PCDEs from condensation of polychlorophenols and PCBz. The condensation of polychlorophenols with PCBz formed PCDEs through elimination of HCl between polychlorophenols and PCBz molecules. Another pathway of PCDEs formation was elimination of H2O between two polychlorophenol molecules. In addition, dechlorination processes had caused the specific homologous pattern of PCDEs under higher temperatures.  相似文献   

5.
Oishi K  Toyao K  Kawano Y 《Chemosphere》2008,73(11):1788-1792
The suppressive effects of cyclodextrins (CDs) on the strong estrogenic activity of 17β-estradiol (E2) in water environments were investigated in this study. Cyclodextrins are doughnut-shaped molecules that possess a hydrophobic cavity and a hydrophilic exterior. The cavity can incorporate nonpolar molecules as guests to form inclusion complexes. β-CD and 2-hydroxypropyl-β-CD (HP-β-CD) were the most successful in forming a complex with E2 and improving its low aqueous solubility. The E2/CDs complexes bound to the estrogen receptor in a cell-free system as determined by ELISA and suppressed the hormone activities as measured by a yeast two-hybrid assay. These results indicate that hydrophobic E2 is easily transported through the lipid zone of the plasma membrane into the target cell and can bind to the nuclear receptor. However, the hydrophilic E2/β-CD and E2/HP-β-CD complexes do not penetrate the membrane. Therefore, these CDs are able to suppress the hormone activity of E2 through complex formation.  相似文献   

6.
Tomy GT  Billeck B  Stern GA 《Chemosphere》2000,40(6):679-683
Short chain (C10-C13) polychloro-n-alkanes (sPCAs) mixtures were synthesized by refluxing pure n-alkane (> 99%) with sulfuryl chloride (SO2Cl2) in the presence of UV-light (550 W). The free radical initiated reactions produced analogs containing approximately 4-9 chlorine atoms on each carbon chain. Purification of reaction products was achieved by adsorption chromatography on Florisil. The products were characterized by high-resolution gas chromatography/mass spectrometry (HRGC/MS) operated in the electron capture negative ionization (ECNI) and in electron ionization (EI) modes. Individual standards can now be combined to create standards whose profiles resemble that of environmental samples. Quantification of a known amount of the newly synthesized sPCAs mixture, using an industrial formulation as an external standard, resulted in an overestimation (approximately 28%) in its true value.  相似文献   

7.
Acrylonitrile-butadiene-styrene (ABS) copolymers without and with a polybrominated epoxy type flame retardant were thermally degraded at 450 degrees C alone (10 g) and mixed with polyvinylchloride (PVC) (8 g/2 g). Gaseous and liquid products of degradation were analysed by various gas chromatographic methods (GC with TCD, FID, AED, MSD) in order to determine the individual and cumulative effect of bromine and chlorine on the quality and quantity of degradation compounds. It was found that nitrogen, chlorine, bromine and oxygen are present as organic compounds in liquid products, their quantity depends on the pyrolysed polymer or polymer mixture. Bromophenol and dibromophenols were the main brominated compounds that come from the flame retardant. 1-Chloroethylbenzene was the main chlorine compound observed in liquid products. It was also determined that interactions appear at high temperatures during decomposition between the flame retardant, PVC and the ABS copolymer.  相似文献   

8.
ABSTRACT

In attempt to evaluate the effects of cyclodextrins (CDs) on enantioselectivity of chiral pesticides toxicity, this study investigated effects of three kinds of cyclodextrins including α-CD, β-CD and randomly methylated β-CD (RAMEB) on toxicity of four enantiomers of isomalathion including (1R, 3R)-isomalathion, (1S, 3S)-isomalathion, (1S, 3R)-isomalathion and (1R, 3S)-isomalathion. Generally, the addition of α-CD and RAMEB (1.5 g/L to 3.5 g/L concentration) could lead to reduction of isomalathion toxicity in most cases, while the presence of β-CD (0.3 g/L to 1.5 g/L concentration) enhanced the toxicity of isomalathion. It was speculated that higher electronic cloud density and lower water solubility of β-CD than α-CD and RAMEB might favor to combination between acetylcholinesterase (AChE) and isomalathion included by β-CD. With respect for α-CD and RAMEB, isomalathion included by them could be easily dissolved in water because of high water solubility of the two CDs. Therefore, α-CD and RAMEB can be used as remediation regent for the pollution of isomalathion, and β-CD can act as an additive in improving bioactivity of such pesticides. In addition, the presence of CDs can alter enantioselectivity of chiral pesticides. The differences on the extent of enantioselectivity variation of isomalathion induced by α-CD, RAMEB and β-CD might be ascribe to the different cavity, electron cloud density and solubility among the three CDs. In conclusion, the above results gave researchers a possibility to change enantioselectivity of chiral pesticides from undesirable outcomes to desirable ones.  相似文献   

9.
An allophanic soil (AS) catalyzed the formation of dark-colored polymers via polycondensation reactions between catechol and glycine. The organic carbon content of the AS was increased from 0.16% to 1.3%, indicating that some of the dark-colored polymers had been adsorbed to the AS. The characteristics of the dark-colored polymers adsorbed on the AS were similar to those of a humin that is not extractable with an aqueous alkaline solution. Such a humin-like substance (HuLS) was separated from the AS by treatment with a mixture of HF and HCl. The HuLS and humic acid-like substance (HaLS), comprising the acid-insoluble fraction in the reaction mixture, were characterized by elemental analysis, size exclusion chromatography, pyrolysis-GC/MS and 13C NMR. However, the structural features of HaLS and HuLS had many points in common. These results suggest that HuLS-AS can be regarded as an organo-clay complex formed by the strong adsorption of HaLS to the AS. The adsorption of pentachlorophenol (PCP) to AS and HuLS-AS was examined at pH 5.5. At this pH, the zeta potential of the HuLS-AS showed a negative value. It would, therefore, be expected that pentachlorophenolate anions would adsorb with difficulty to HuLS-AS because of electrostatic repulsion. Nevertheless, the adsorption coefficient for PCP to HuLS-AS, as estimated by the Freundlich isotherm, was seven times larger than that for AS. These results show that HuLS, when adsorbed on the AS surface, has the capability to enhance the adsorption of PCP.  相似文献   

10.
A chemical method for destroying the 2,3,7,8-TCDD is reported; it provides gradual and progressive substitution of the chlorine atoms by hydrogen atoms. The dehalogenation is promoted by a mixture made up of polyethyleneglycols (high molecular weight) of a weak base (K2 CO3) and of an inorganic peroxide (Na2 O2) which begins the radical process. The organic chlorine is transformed into inorganic chloride.The reaction mixture administered to male guinea-pigs did not lead to any direct or histological effect.  相似文献   

11.
Liou RM  Chen SH  Hung MY  Hsu CS 《Chemosphere》2004,55(9):1271-1280
Pentachlorophenol (PCP) is a wood preserving agent that is commonly found in contaminated soils at wood treatment sites. The catalytic properties of Fe+3-resin for the oxidation of PCP in aqueous solution and soil suspension with H2O2 were tested. Batch tests in aqueous solution were performed at various dosages of catalyst and H2O2, and reaction temperatures. The results showed that the oxidation of PCP in aqueous solution depends on the dose of H2O2 and the temperature. Essentially complete oxidation of 100 mgl(-1) PCP was obtained with 0.5% Fe+3-resin catalyst, 0.1 M H2O2 and at a reaction temperature of 80 degrees C. The oxidation of PCP achieved in three different soil suspensions was more than 94% within 30-50 min. Moreover, it was demonstrated that the same Fe+3-resin could be reused for at least six cycles of PCP oxidation in soil solutions without loss in efficiency unless the pH of the reaction falls below 5. It was proposed that the loss in used Fe+3-resin catalyst activity could be related to the leaching of Fe+3 at low pH.  相似文献   

12.
The objectives of the present research were (i) to report the mass balance of chlorine during pentachlorophenol (PCP) photodegradation and (ii) to reveal the photodegradation pathway experimentally with a theoretical proof based on the density functional theory (DFT). The chlorine of PCP was completely mineralized to produce chloride ions after 24h of UV irradiation. As intermediates, 2,3,5,6-tetrachlorophenol, 2,3,4,6-tetrachlorophenol and 2,5-dichlorophenol were identified. At least 80% of the chlorine balance during PCP photodegradation was accounted by PCP, these intermediates, and chloride ions. A DFT calculation showed differences in the C-Cl bond dissociation energy level and the positions of respective PCP molecular and the PCP intermediates. The dechlorination intermediates predicted using the calculated C-Cl bond dissociation energy were consistent with those experimentally confirmed, indicating the feasibility of this theoretical method in predicting the dechlorination pathway.  相似文献   

13.
We determined the toxicity of various chlorophenols, especially pentachlorophenol (PCP), on five bacterial strains and studied PCP biodegradation in soils amended with an organomineral complex (OMC) prepared from humic acids (organic part) bound on zeolite (inorganic part). Both components of OMC have excellent sorption properties and are of natural origin and therefore suitable to be used in the environment. Toxicity of chlorophenols depends not only on the number of chlorine atoms but also on their position on aromatic ring, and is thus regiospecific. Biodegradation of PCP was studied in three real completely characterized soil samples, Chernozem, Fluvisol, and Regosol, with and without the addition of OMC. The soils were sterilized and bioaugmented with the bacterial isolate Comamonas testosteroni CCM 7530. The immobilization effect of OMC in relation to PCP depends on the concentration of humic acids (HAs), the PCP concentration, and the content of organic carbon in soil. The microbial activity and the simulated action of acid rains led to the gradual release and biodegradation of the reversibly bound PCP without no initial toxic effect on indigenous or bioaugmented microorganisms. OMC appeared to be a good trap for PCP with potential applications in remediation technology because it reduces the potential toxicity of PCP to microbial community by lowering its bioavailability and thus facilitates its biodegradation.  相似文献   

14.
The UV/H2O2-induced degradation of carbamazepine, a worldwide used antiepileptic drug, recently found as contaminant in many municipal sewage treatment plant (STP) effluents and other aquatic environments, is investigated. The oxidation treatment caused an effective removal of the drug. At complete abatement of the substrate after 4 min treatment, a 35% value of removed total organic carbon (TOC) was obtained. A kinetic constant of (2.05+/-0.14) x 10(9) lmol(-1)s(-1) was determined for OH radical attack to carbamazepine in the UV/H2O2 process. Preparative TLC of the reaction mixture led to the isolation of acridine-9-carboxaldehyde as a reaction intermediate. HPLC and GC/MS analysis indicated formation of small amounts of acridine, salicylic acid, catechol and anthranilic acid among the reaction products. Under the same reaction conditions, synthetically prepared 10,11-epoxycarbamazepine was easily degraded to acridine as main product, suggesting that this epoxide is a likely intermediate in the oxidative conversion of carbamazepine to acridine. Under sunlight irradiation, carbamazepine in water underwent slow degradation to afford likewise acridine as main product. In view of the mutagenic properties of acridine, these results would raise important issues concerning the possible environmental impact of carbamazepine release through domestic wastewaters and support the importance of prolonged oxidation treatments to ensure complete degradation of aromatic intermediates.  相似文献   

15.
The codisposal of toxic metals and radionuclides with organic chelating agents has been implicated in the facilitated transport of the inorganic contaminants away from primary waste disposal areas. We investigated the transport of Co(II)NTA through undisturbed cores of fractured shale saprolite. Experiments were conducted across the pH range 4 to 8 by collecting cores from different locations within the weathering profile. Aqueous complexation, adsorption, dissociation and oxidation reactions influenced Co(II)NTA transport. The suite of reaction products identified in column effluent varied with experimental pH. At low pH and in the presence of abundant exchangeable aluminum, Co transport occurred predominantly as the Co2+ ion. At higher pH, Co was transported primarily as Co(II)NTA and the Co(III) species Co(III)(HNTA)2 and Co(III)(IDA)2. The formation of the geochemical oxidation products (Co(III) species) has far reaching implications as these compounds are kinetically and thermodynamically stable, are transported more rapidly than Co(II)NTA, and are resistant to biodegradation. These results demonstrate that natural minerals, in the physical structure encountered naturally, can be more important in the formation of mobile, stable contaminant forms than they can be for the retardation and dissociation of the contaminants.  相似文献   

16.
Zero-valent iron holds great promise in treating groundwater, and its reactivity and efficacy depend on many surrounding factors. In the present work, the effects of solution chemistry such as pH, humic acid (HA), and inorganic ions on pentachlorophenol (PCP) dechlorination by smectite-templated Pd(0)/Fe(0) were systematically studied. Smectite-templated Pd(0)/Fe(0) was prepared by saturating the negatively charged sites of smectite clay with Fe(III) and a small amount of Pd(II), followed by borohydride reduction to convert Fe(III) and Pd(II) into zero-valent metal clusters. Batch experiments were conducted to investigate the effects of water chemistry on PCP remediation. The PCP dechlorination rate critically depends on the reaction pH over the range 6.0~10.0; the rate constant (k (obs)) increases with decreasing the reaction pH value. Also, the PCP remediation is inhibited by HA, which can be attributed to the electron competition of HA with H(+). In addition, the reduction of PCP can be accelerated by various anions, following the order: Cl(-) > HCO (3) (-) > SO (4) (2-) ~no anion. In the case of cations, Ca(2+) and Mg(2+) (10 mM) decrease the dechlorination rate to 0.7959 and 0.7798 from 1.315 h(-1), respectively. After introducing HA into the reaction systems with cations or/and anions, the dechlorination rates are similar to that containing HA alone. This study reveals that low pH and the presence of some anions such as Cl(-) facilitate the PCP dechlorination and induce the rapid consumption of nanosized zero-valent iron simultaneously. However, the dechlorination rate is no longer correlated to the inhibitory or accelerating effects by cations and anions in the presence of 10 mg/L HA.  相似文献   

17.
Kinetics of photodegradation and ozonation of pentachlorophenol   总被引:3,自引:0,他引:3  
The oxidation of 2,3,4,5,6-pentachlorophenol (PCP) has been carried out by a photodecomposition process using a polychromatic UV irradiation, and by an ozonation process. In the photodegradation process, the pH accelerated the decomposition rate and the approximate first-order rate constants were evaluated, with values between 0.16+/-0.005 min(-1) at pH=3 and 0.26+/-0.007 min(-1) at pH=9. A more rigorous kinetic study led to the determination of the quantum yields of the reaction, with values of 200+/-7x10(-3) mol/Eins for pH=3 and 22+/-1.1x10(-3) mol/Eins for pH=9. In the ozonation process, the rate constants for the reaction between ozone and PCP were determined by means of a competition kinetics, with values in the range from 0.67x10(5) to 314x10(5) l/mols. The specific rate constants for the un-dissociated and dissociated forms of PCP were also calculated. Finally, in both processes, the intermediate reaction products were identified, the most important being tetrachlorocatechol, tetrachlorohydroquinone and tetra-p-chlorobenzoquinone. Free chloride ion released, which was favored at high pHs, was also followed in both processes.  相似文献   

18.
19.
Six products were formed by reaction of ethynylestradiol (EE2) with sodium hypochlorite in buffered solutions. 4-Chloroethynylestradiol (4-ClEE2) and 2,4-dichloroethynylestradiol (2,4-diClEE2) were identified as the two major reaction products, using preparative HPLC, MS, and NMR. When EE2 reacted with chlorine at different pHs (pH 5, 7, and 9) or chlorine concentrations (0.2, 1, 2, and 5 mmol/l, corresponding to molar ratios to EE2, 1, 5, 10, and 25, respectively), the formation of 4-ClEE2 and 2,4-diClEE2 was observed under the above conditions, and the highest yields were 20 and 52 mol%, respectively. EE2 was consumed almost completely within 5 min of chlorination by addition of chlorine of more than 1 mmol/l (molar ratio to EE2, 5). On the other hand, the two products existed in highly chlorinated solutions after 60 min (4ClEE2, 1-6 mol%; 2,4-diClEE2, 3-25 mol%). The estrogenic activities of 4-ClEE2 by estrogen receptor alpha or beta binding assay were similar to those of the parent EE2, and the activities of 2,4-diClEE2 were lower about 10 times.  相似文献   

20.
Chang CY  Hsieh YH  Lin YM  Hu PY  Liu CC  Wang KH 《Chemosphere》2001,44(5):1153-1158
The object of this research was to study the formation of disinfection by-products by using chlorine dioxide (ClO2) as a disinfectant reacting with different properties of organic substance in natural aquatic environment. The adsorbent resin (XAD-4, XAD-7) was used to divide the organic matters in raw water into three groups. The influence of the function groups on structure, reaction tendency, and formation of disinfection by-products generated by the reaction of these organic substances with chlorine dioxide was explored. The experimental results show that the three different organic groups formed using adsorbent resin were hydrophobic substance, hydrophilic acid, and non-acid hydrophilics in proportions of 43%, 41%, and 16%, respectively. Within the raw water in our study, the hydrophilic substance had a higher distribution proportion than that described in general articles and journals, which indicates that this water was contaminated with pollution from human beings. The exploration of the reactivity of the three different organic substances with chlorine dioxide shows that the unit consumption of disinfection agent per unit organic matters (represented by ClO2/DOC) is in the following sequence hydrophobic substance > hydrophilic substance > non-acid hydrophilics. It indicated that larger molecular organic precursors had larger consumption of disinfectant. We also discovered that after the reaction of the three different organic substances with chlorine dioxide, the largest amount of disinfection by-products were generated by the non-acid hydrophilics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号