首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The quantitative significance of the nitrogenous compound glycine betaine (GBT) and its sulfur analog dimethylsulfoniopropionate (DMSP) to intracellular pools in marine phytoplankton is not well known. In a series of experiments conducted in August 1993, we measured these compounds, as well as total organic sulfur, carbon, and nitrogen, over the growth cycle in six isolates of marine phytoplankton, Amphidinium carterae Hulburt, Chrysochromulina sp. Lackey, Emiliania huxleyi Hay et Mohler, Prorocentrum minimum (Pavillard) Schiller, Skeletonema costatum (Greville) Cleve, and Tetraselmis sp. At the same time, we measured cellular concentrations of protein, amino acids, chlorophyll, and inorganic nutrients. All six species produced DMSP, while three produced GBT at lesser levels. In the Chrysochromulina sp. isolate, levels of GBT were greater than DMSP during the exponential phase of growth, but declined sharply as the culture approached stationary phase. This change appeared to coincide with the onset of nitrogen limitation. Other nitrogenous osmolytes were produced in five of the six species but in much smaller quantities. DMSP contributed significantly to cellular sulfur throughout the growth cycle although, in some algae, the proportion of dissolved DMSP increased substantially during stationary growth. When present, GBT formed a sizeable fraction of the cellular nitrogen only during exponential growth. A significant percentage (ca. 50%) of the organic nitrogen could not be accounted for even when cellular pools of protein, amino acids, inorganic nitrogen, and nitrogenous osmolytes were combined. Based on these experiments, there does not appear to be a reciprocal relationship between DMSP and GBT production, although GBT production does appear to be correlated with nitrogen availability. Received: 5 January 1998 / Accepted: 29 June 1999  相似文献   

2.
The vertical distribution of chlorophylla, copepods, dissolved free amino acid concentration and the fixation of14C by phytoplankton were monitored in the springs of 1983, 1987 and 1988 in the Ushant front region, shelf edge of the Celtic Sea and central Irish Sea, respectively. In each area, two stations characterized by mixed and stratified water conditions were compared. Vertical distributions of amino acids coincided with the distribution of copepods. A positive and significant correlation was found between the abudance of copepods and the concentration of amino acids dissolved in seawater. A negative and significant correlation was found between chlorophylla and the concentration of amino acids. Enrichment of amino acids ( 20 to 500 nM l–1 at specific depths) due to aspartic and glutamic acids, glutamine and ornithine, was assumed to reflect copepod feeding activity and faecal production. At these depths, the natural concentration and diversity of amino acids, including aspartic acid, glutamic acid, asparagine, serine, histidine, glutamine, arginine, threonine, glycine, alanine, tyrosine, valine, phenylalanine, ornithine and lysine, were high enough and in the correct proportions for triggering feeding and swimming and swarming behavior of copepods, as well as their remote detection of food at the micro- and meso-scales (1 to 10 m). This accumulation of amino acids also constitutes a potential additional source of organic nitrogen for bacteria and phytoplankton.  相似文献   

3.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages.  相似文献   

4.
Recent evaluations of estuarine and coastal nutrient budgets implicate atmospheric deposition as a potentially significant (20 to 30%) source of biologically available nitrogen. We examined the potential growth stimulating impact of atmospheric nitrogen loading (ANL), as local rainfall, in representative shallow, nitrogen limited North Carolina mesohaline estuarine and euhaline coastal Atlantic Ocean habitats. From July 1988 to December 1989, using in situ bioassays, we examined natural phytoplankton growth responses, as14CO2 assimilation and chlorophylla production, to rain additions over a range of dilutions mimicking actual input levels. Rainfall at naturally occurring dilutions (0.5 to 5%) stimulated both14CO2 assimilation and chlorophylla production, in most cases in a highly significant manner. Parallel nutrient enrichments consistently pointed to nitrogen as the growth stimulating nutrient source. Generally, more acidic rainfall led to greater magnitudes of growth stimulation, especially at lower dilutions. Nutrient analyses of local rainfall from May 1988 to January 1990 indicated an inverse relationship between pH and NO 3 - content. There have been growing concerns regarding increasing coastal and estuarine eutrophication, including ecologically and economically devastating phytoplankton blooms bordering urban and industrial regions of North America, Europe, Japan, and Korea. It appears timely, if not essential, to consider atmospheric nutrient loading in the formulation and implementation of nutrient management strategies aimed at mitigating coastal eutrophication.  相似文献   

5.
Species differences in accumulation of nitrogen pools in phytoplankton   总被引:12,自引:0,他引:12  
The changes in the intracellular concentrations of nitrate, ammonium, free amino acids, protein, DNA, RNA and total nitrogen were measured in batch cultures of seven species of marine phytoplankton as they progressed from being nitrogen sufficient to being nitrogen starved. After several days of nitrogen starvation, either nitrate or ammonium was added to the cultures, and the measurements were continued for 10 to 36 h. By this means it was possible to assess the long-term and short-term changes in cellular nitrogen compounds and how they relate to phytoplankton nitrogen uptake and growth. Considerable species differences were observed in the amounts and kinds of nitrogen compounds which were stored and the degree to which the utilization of these compounds could support growth if the external nitrogen supply is low or variable. Despite the species variation, the results suggest that the concentrations or ratios of a number of intracellular nitrogen compounds can be used to assess the nitrogen deficiency and/or growth rate of natural phytoplankton populations.Contribution No. 1373 from the School of Oceanography, University of Washington and Contribution No. 83006 from the Bigelow Laboratory for Ocean Sciences  相似文献   

6.
Estimates of the biomass of zooplankton, phytoplankton and particulate matter collected in the Celtic Sea during mixed-water conditions (on 8 and 9 April 1983) were compared to the concentration and diversity of sixteen dissolved free amino acids (DFAA) measured in seawater and in particles. During a day profile, variations of dissolved amino acids with depth reflected the feeding activity of copepods. The relationship was not apparent in a night profile and other processes, such as heterotrophic utilization of dissolved nitrogen by microorganisms, were thought to be involved. The ratios of total DFAA concentration (nM litre-1) in the particulate phase over the concentration in seawater ranged from 1 to 200 within the water column. Of the sixteen amino acids measured, ornithine, a decomposition product of arginine, was responsible for more than 70% of the total concentration of DFAA in seawater. In the particles, phenylalanine ranged from 30 to 88% of total DFAA. In seawater this amino acid occurred in the 20 to 40 m depths (1.3 to 9.9% of total DFAA) in the day profile and at 5 m (12.4%) and 80 m (6.4%) in the night profile. Previously it has only been found in very low concentrations (<5%) in seawater, and its presence is considered to be the result of zooplankton feeding.  相似文献   

7.
Summary. The nutritive value of tree foliage for herbivores decreases rapidly with leaf maturation, due in particular to the decline in leaf nitrogen content. Since the amino acid content of plants differs from the need of herbivores for individual amino acids, we examined developmental changes in the contents of amino acids throughout the growth season of mountain birch. The contents of free and protein-bound amino acids, as well as essential and nonessential ones, displayed different patterns with leaf maturation, suggesting that total nitrogen or protein levels are poor predictors of the nutritive status of leaves. The contents of protein-bound amino acids were 100 times higher than those of free amino acids, indicating that the role of free amino acids in nutrition of herbivores is probably less important than that of protein-bound amino acids. Among protein-bound amino acids, both the absolute and the relative contents of two nitrogen-rich essential amino acids, lysine and arginine, decreased during early leaf growth, presumably reducing nitrogen availability in developing leaves. Essential amino acids were mainly positively related to each other, suggesting the co-ordinated regulation of their synthesis. Changes in correlations among individual free amino acids reflected developmental changes in allocation preferences between biosynthesis pathways with leaf growth. Received 31 January 2003; accepted 17 March 2003. R1D=" Correspondence to: Teija Ruuhola, e-mail: teiruu@utu.fi  相似文献   

8.
Kelp forests are enormously productive, and they and adjacent habitats support large populations of suspension feeders. What do these suspension feeders eat? Intuitively, we might expect that kelp primary production is a key form of trophic support for these animals. Indeed, a large and growing number of studies using carbon stable isotope data, typically collected over short time periods, have asserted that detritus from kelps is an important, and in some cases the main, food source for coastal benthic suspension feeders. This view has been incorporated into several textbooks and review papers covering kelp forest ecosystems, and loss of trophic support for benthic suspension feeders is now often invoked as an ecosystem consequence of top-down or other impacts on kelp forests. More direct evidence, however, suggests that these animals mainly eat phytoplankton and, in some cases, bacteria or zooplankton. Because isotope values of pure coastal phytoplankton, uncontaminated with detritus, are difficult to obtain, present studies have largely relied on single measurements from offshore environments or from the literature, which typically reflects offshore values. We review the evidence showing that phytoplankton isotope values can, and are expected to, vary widely in coastal waters and that inshore phytoplankton may often be enriched in 13C compared to offshore phytoplankton. This unaccounted-for variation may have systematically biased the results of such trophic studies toward finding large contributions of kelp detritus to suspension-feeder diets. We review some key stable isotope studies and put forth evidence for alternative explanations of the isotope patterns presented. Finally, we make recommendations for future isotope studies and describe several approaches for progress in this area. New techniques, particularly flow cytometry and compound-specific stable isotope analysis, provide ways to shed light on this interesting and important ecological issue.  相似文献   

9.
洞庭湖浮游植物增长的限制性营养元素研究   总被引:1,自引:0,他引:1  
近20年水质监测资料表明,洞庭湖水体富营养化日趋严重。洞庭湖水体主要污染物为氮和磷,而营养盐赋存形态及其含量对浮游植物生长的影响在洞庭湖尚未见报道。2011年9月至2012年8月对洞庭湖浮游植物生物量及主要营养盐赋存形态与含量进行监测,同时利用藻类增长的生物学(NEB)评价方法对限制浮游植物增长的营养盐进行了研究,并分析了浮游植物生物量与各营养元素之间的相关性。结果表明:洞庭湖主要污染物总氮(TN)和总磷(TP)的年平均值分别为1.90 mg·L-1和0.093 mg·L-1,溶解态无机氮(DIN)平均占ρ(TN)比例为87%,溶解态总磷(DTP)平均占ρ(TP)比例为70%。洞庭湖水体中,DIN是TN的主要贡献者,且不同形态DIN的贡献大小依次为ρ(NO3--N)〉ρ(NH4+-N)〉ρ(NO2--N);磷形态组成中,TP主要以溶解反应性磷(SRP)存在。春季洞庭湖水体中ρ(TN)、ρ(TP)较高,这一结果可能源于春季面源污染。洞庭湖水体中ρ(Chla)与氮显著正相关,与磷显著负相关。NEB 实验结果表明氮对洞庭湖浮游植物生长有明显的促进作用,其幅度随氮浓度的增加而加强,而磷对浮游植物的生长影响不大,有时出现抑制作用,硝态氮与磷之间不存在交互作用。因此,氮可能是洞庭湖浮游植物增长的主要限制性营养因子,这一研究暗示在洞庭湖富营养化控制过程中应特别注重氮的控制。  相似文献   

10.
淡水水体溶解有机氮对有毒藻种的生物有效性   总被引:2,自引:0,他引:2  
溶解有机氮(Dissolved organic nitrogen,DON)是多数天然水体中溶解氮的主要组成部分。天然水体DON是许多微生命体包括有毒藻种的氮营养源,在供水安全以及水体富营养化等方面的生态环境效应不容忽视。文章系统地介绍了淡水水体DON含量与来源、生物有效性与估算方法,以及对有毒藻种生长的影响。DON的来源是影响水体中DON含量动态特征的关键因素。DON来源包括陆地径流,植物碎屑,土壤淋溶液,沉积物释放,大气沉降,藻类、大型植物、细菌与细胞死亡或自我分解,微型及大型浮游动物捕食和排泄、分泌物释放等。研究表明约有12%~72%的DON可迅速被生物所利用,具显著差异,究其原因可能是其来源组成、化学本质(分子质量与极性)、测试生物组成、是否有细菌作用等因素造成的。不同藻种具有不同氮源利用能力,DON对藻类生长具有直接或间接的作用,并可能影响藻类群落结构(有毒藻类成为优势种)。考虑到水环境保护与饮用水安全供水的重要性,未来研究应重视淡水水体DON生物有效性与其化学本质的揭示,尤其是对有毒藻种。  相似文献   

11.
《Ecological modelling》2003,161(3):213-238
Anumerical deterministic model for a seagrass ecosystem (Zostera noltii meadows) has been developed for the Thau lagoon. It involves both above- and belowground seagrass biomasses, nitrogen quotas and epiphytes. Driving variables are light intensity, wind speed, rain data and water temperature. This seagrass model has been coupled to another biological model in order to simulate the relative contributions of each primary producer to: (i) the total ecosystem production, (ii) the impact on inorganic nitrogen and (iii) the fluxes towards the detritus compartment. As a first step in the modelling of seagrass beds in the Thau lagoon, the model has a vertical structure based on four boxes (a water box on top of three sediment boxes) and the horizontal variability is neglected until now. This simple box structure is nevertheless representative for the shallow depth Z. noltii meadows, spread over large areas at the lagoon periphery.After calibration, simulation results have been compared with in situ measurements and have shown that the model is able to reproduce the general pattern of biomasses and nitrogen contents seasonal dynamics. Moreover, results show that, in such shallow ecosystems, seagrasses remain the most productive compartment when compared with epiphytes or phytoplankton productions, and that seagrasses, probably due to their ability in taking nutrients in the sediment, have a lower impact on nutrient concentration in the water column than the phytoplankton. Furthermore, in spite of active mechanisms of internal nitrogen redistribution and reclamation, the occurrence of a nitrogen limitation of the seagrass growth during summer, already mentioned in the literature, have also been pointed out by the model. Finally, simulations seems to point out that epiphytes and phytoplankton could compete for nitrogen in the water column, while a competition for light resources seems to be more likely between epiphytes and seagrasses.  相似文献   

12.
We examined the impact of exposing natural populations of marine bacteria (from seawater collected near Woods Hole, Massachusetts, USA) to multiple nitrogen and carbon sources in a series of batch growth experiments conducted from 1989 through 1990. The substrate C:N ratio (C:Ns) was varied from 1.5:1 to 10:1 either with equal amounts of NH 4 + and different amino acids or an amino acid mixture, all supplemented with glucose to maintain the C:Ns ratio equal to that of the respective amino acid, or with combinations of glucose and NH 4 + alone. A common feature of the experiments involving amino acids was the concurrent uptake of NH 4 + and amino acids that persisted as long as a readily assimilable carbon source (glucose in our case) was taken up. There was no net regeneration of NH 4 + , even though catabolism of amino acids occurred. Regeneration of NH 4 + was evident only after glucose was completely utilized, which usually occurred at the end of exponential growth. The contribution of15NH 4 + to total nitrogen uptake by the end of exponential growth varied from ~60 to 80% when individual amino acids were present and down to ~24% when the amino acid mixture was added. These estimates are conservative because we did not account for possible isotope dilution effects resulting from amino acid catabolism. When NH 4 + and glucose were the sole nitrogen and carbon sources, there was a stoichiometric balance between glucose and NH 4 + uptake over a wide range of C:Ns ratios, leading to a constant bacterial biomass C:N ratio (C:NB) of ~4.5:1. As a result NH 4 + usage varied from 50% when the C:Ns ratio was 3.6:1, to 100% when the C:Ns ratio was 10:1. Gross growth efficiency varied from ~60% when NH 4 + plus glucose were added alone or with the amino acid mixture, to 47% when the individual amino acids were used in place of the mixture. It is thus evident that actively growing bacteria will act as sinks for nitrogen when a carbon source that can be assimilated easily is available to balance NH 4 + uptake, even when amino acids are available and are being co-metabolized.  相似文献   

13.
N:P atomic ratios calculated on NO3-N alone for the upper waters of the tropical Atlantic Ocean off Barbados are very low, being only 9.8:1. Absolute values are also low, the integrated values between O and 100 m for NO3-N and PO4-P being 0.59 and 0.06 g-at l-1, respectively. However, when ammonia is included as a nitrogen source the ratio becomes 28.8:1. This is the average value obtained from 42 samples taken over a 21-month period, and suggests that phosphorus, and not nitrogen, is the more critical nutrient in phytoplankton growth off Barbados.  相似文献   

14.
Growth rates of juvenile Capitella sp. I were determined on different rations of six food types: Gerber's mixed cereal, TetraMin fish flakes, benthic diatoms, Ulva sp., spring detritus, and summer detritus. A simple growth model estimated maximum growth rate and maintenance ration for each food. There were differences in the growth response among foods relative to nitrogen content. As juveniles increased in size, differences in growth between foods became more pronounced. For all juveniles, growth rates were correlated with levels of the amino acids histidine, phenylalanine, threonine, and valine, and the polyunsaturated fatty acid 20:5w3; correlations with histidine and phenylalanine levels were the most significant. Regressions of growth rates as a function of these two amino acids suggest a daily maintenance ration of 300 pg histidine and phenylalanine mg-1 nitrogen biomass. Juvenile worms grew on spring detritus but not on summer detritus, indicating the probable importance of micronutrients (polyunsaturated fatty acids, amino acids) for growth of juvenile Capitella sp. I in the field.  相似文献   

15.
A vertical-compressed three-dimensional ecological model in Lake Taihu, China   总被引:20,自引:0,他引:20  
A three-dimensional ecological model on the basis of the analyses of environmental characteristics is set up for Lake Taihu, one of the largest shallow lakes in China. The hydrodynamic processes, nutrient cycling, chemical processes and biological processes are integrated in the model. Model state variables include: water current, surface displacement, nutrients of nitrogen and phosphorus, as well as their different forms such as ammonia nitrogen, nitrate nitrogen, phosphate phosphorus, etc., biomasses of macroplankton, phytoplankton, zooplankton and fish, and also the nutrient levels of macroplankton and phytoplankton. A nutrient budget and sediment transformation are also coupled in the model. The data from January 17, 1997 to January 18, 1998 are use to calibrate the model. The model results have shown good agreement with the observations. It implies that the model could be used for the lake environmental management and research for examining the processes and determining the water quality. The reasons of deviations between the modelled results and the observed values are also discussed. There are six factors that explain the deviations of the modelled results from the observed values and they can be grouped into two sets. One set of problems is associated with the standard deviation introduced by sampling and analyses. The second set of problems can be solved by introduction of processes lacking in the present model (resuspension, phytoplankton transportation mode under the wind with low speed, shifts in species composition and varied size of phytoplankton and zooplankton). The latter two processes should be included in the model at a later stage by integration of a structurally dynamic approach into the three-dimensional model.  相似文献   

16.
The marine pseudomonad bacterium PL1 contains an intracellular pool of free amino acids which consist mainly of glutamate with small amounts of glutamine and aspartate when grown in a nutrient medium containing 0.2 M NaCl. When the NaCl concentration of the growth medium is increased to 0.8 M, proline becomes a major component of the intracellular pool together with glutamate—at this molarity and under suitable nutrient conditions these amino acids comprise 20% of total bacterial amino acid nitrogen. When grown in a nutrient growth medium containing a constant level of NaCl, the intracellular pool size can vary by a factor of 4 depending on the concentration of carbon and nitrogen in the medium. Experiments show that the amino acid pool can act as a nitrogen reserve but has little function as a carbon reserve. At high NaCl concentrations there is a marked dependence for growth on the presence of sufficient potassium in the medium. However, no correlation between K+ and glutamate concentration in either nitrogen or K+-limited cultures has been found. None of the enzymes associated with glutamate biosynthesis was influenced by NaCl levels between 0.2 and 0.5 M. Neither Na+ or K+ stimulated the activity of these enzymes when tested in vitro.  相似文献   

17.
上海城市降水径流营养盐氮负荷及空间分布   总被引:23,自引:1,他引:23  
在野外采样和室内化学分析的基础上,研究了上海市区,郊区各不同功能区内降水径流中营养元素氮的含量水平及其空间分布差异,研究结果表明,城市降水径流中营养元素氮具有较高的含量水平,其中TIN,NH4-N,NO3-N的均值含量分别为7.45,3.14,2.98和1.33mg/L,与同期河流水体中氮含量相比,降水径流中营养元素氮对河流水中氮含量水平具有重要的贡献,反映城市降水径流是一种不容忽略的非点污染源,从城市降水径流中营养元素氮负荷的空间分布来看,在工业区,交通要道,氮含量普遍偏高,而在居民居住区和商业区,氮含量普遍较低,此外,市区和郊区相比,在市区内氮含量普遍比郊区高。  相似文献   

18.
Harrison KA  Bol R  Bardgett RD 《Ecology》2007,88(4):989-999
The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms vary over time. Our data suggest that coexisting plants can outcompete microbes for a variety of N forms, but that such plant species show similar preferences for inorganic over organic N.  相似文献   

19.
Six species of bacteria and a marine yeast which are able to use alkylated amines as a sole source of nitrogen have been isolated from marine mud and tentatively assigned to genera. One isolate (Micrococcus sp.) has been studied in greater detail. This organism has a constitutive ability to utilise trimethylamine and the lesser methylated amines as a sole source of nitrogen. Growth and metabolic studies suggest that the methylated amines are metabolized by a pathway involving a stepwise demethylation process. The implications of the results obtained on the route of regeneration and recycling of amine nitrogen in the marine environment is discussed.  相似文献   

20.
Freshly harvested cells of Phaeodactylum tricornutum Bohlin grown with nitrate, ammonium or lysine as a sole nitrogen source had a low ability to take up lysine or arginine, but this ability increased when cells were deprived, over 48 h, of either nitrogen or carbon. The effects of nitrogen and carbon deprivation were additive, and the uptake ability was greatest in cells incubated in darkness in nitrogen-free medium. Uptake ability increased in cells illuminated in the presence of 10-5 M 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) an inhibitor of photosynthetic electron transport. An inverse relationship between rate of development of the uptake system and rate of photosynthesis was also established. Development of the uptake system was prevented by cycloheximide or by anaerobiosis. Following transfer to a normal nitrate medium, illuminated cells lost the lysineuptake system by dilution as the cells grew. There was a linear and positive correlation between the initial rate of uptake of lysine and the maximum concentration which was maintained in the cells when equilibrium was reached, indicating that transinhibition of lysine uptake may occur and that the extent of this inhibition is related to the size of the internal amino acid pool. The relevance of the findings to the growth of phytoplankton in natural waters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号