首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

2.
Field application of animal manure is a major cause of odor nuisance in the local environment. Therefore, there is a need for methods for measuring the effect of technologies for reducing odor after manure application. In this work, chemical methods were used to identify key odorants from field application of pig manure based on experiments with surface application by trailing hoses and soil injection. Results from three consecutive years of field trials with full-scale equipment are reported. Methods applied were: membrane inlet mass spectrometry (MIMS), proton-transfer-reaction mass spectrometry (PTR-MS), gold-film hydrogen sulfide (H?S) detection, all performed on site, and thermal desorption gas chromatography with mass spectrometry (TD-GC/MS) based on laboratory analyses of field samples. Samples were collected from a static flux chamber often used for obtaining samples for dynamic olfactometry. While all methods were capable of detecting relevant odorants, PTR-MS gave the most comprehensive results. Based on odor threshold values, 4-methylphenol, H?S, and methanethiol are suggested as key odorants. Significant odorant reductions by soil injection were consistently observed in all trials. The flux chamber technique was demonstrated to be associated with critical errors due to compound instabilities in the chamber. This was most apparent for H?S, on a time scale of a few minutes, and on a longer time scale for methanethiol.  相似文献   

3.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

4.
Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particles < 10 μm), during the driving as well as during episodes of wind erosion. Particular attention is paid to how the creation of a new trail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63–2000 μm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2–63 μm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.  相似文献   

5.
Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and <1% for CP from the TIF field during a 6-d film covering period, compared with 43% for 1,3-D and 12% for CP from the PE field. However, on film-cutting, greater retention of 1,3-D in the TIF field resulted in a much higher emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures.  相似文献   

6.
In line with European regulations, Dutch law imposes an environmental threshold of 0.1 microg L(-1) on pesticide concentrations in ground water. During registration, the risk of exceeding this threshold is assessed through simulations for one or a few standard scenarios that do not reflect spatial variability under field conditions. The introduction of precision agriculture, where soil variability is actively managed, can increase control over pesticide leaching. This study presents a step-wise evaluation of the effects of soil variability and weather conditions on pesticide leaching. The evaluation was conducted on a 100-ha arable farm and aimed at identifying opportunities for precision management. As a first step, a relative risk assessment identified pesticides presenting a relatively high risk to the environment. Second, the effect of weather conditions was analyzed through 20 years of simulations for three distinct soil profiles. Results were summarized in cumulative probability plots to provide a probabilistic characterization of historical weather data. The year matching 90% probability (1981) served as a reference to simulate pesticide leaching from 612 soil profiles. After interpolation, areas where concentrations exceeded the environmental threshold were identified. Out of a total of 19 pesticides, isoproturon [N-dimethyl-N'-(4-(1-methylethyl)phenyl)urea], metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one], and bentazon [2,1,3-benzothiadiazin-4(3H)-one, 3-isopropyl-, 2,2-dioxide] showed the highest risk for leaching. Leaching was strongly affected by soil variability at the within-field, field, and farm levels. Opportunities for precision management were apparent, but depended on the scale level at which environmental thresholds were implemented. When legislation is formulated in this issue, the presented step-wise evaluation can serve as a basis for identification and precision management of high-risk pesticides.  相似文献   

7.
Aeration improves the capacity of leachfields to decontaminate and reduce the nutrient load of wastewater. To gain a better understanding of the effects of aeration, we examined the faunal and microbial communities of septic system leachfield soil (0-4 and 4-13 cm) using replicated (n = 3) mesocosms that were actively aerated (AIR) or unaerated (LEACH). Protozoa were 40 to 140 times more abundant in AIR than in LEACH soil. No nematodes were found in LEACH soil, whereas AIR soil contained 5 to 14 x 10(3) nematodes (all bacteriovores) kg(-1). Active microbial biomass was four to five times higher in AIR than LEACH soil. Proteobacteria and actinomycetes/sulfate-reducing bacteria constituted a higher proportion of the community in AIR soil, whereas anaerobic Gram-negative bacteria/firmicutes were more prominent in LEACH soil. Ratios of prokaryotic to eukaryotic phospholipid fatty acids (PLFAs) were higher in LEACH soil, as were membrane stress index values, whereas the starvation index was higher in AIR soil. Community-level physiological profiles showed that 29 and 30 different substrates were used for growth by LEACH and AIR soil microorganisms, respectively. The AIR soil had more microorganisms capable of growing on 10 substrates, whereas growth on two substrates was higher in LEACH soil. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA gene fragments revealed greater diversity of dominant phylotypes in AIR than LEACH soil, with communities separated by treatment. Aerated leachfield soil had a larger and more diverse faunal and microbial community than unaerated soil, possibly due to differences in the type and availability of electron acceptors.  相似文献   

8.
Prions are the etiological agents of transmissible spongiform encephalopathies (TSSEs), a class of fatal neurodegenerative diseases affecting humans and other mammals. The pathogenic prion protein is a misfolded form of the host-encoded prion protein and represents the predominant, if not sole, component of the infectious agent. Environmental routes of TSE transmission areimplicated in epizootics of sheep scrapie and chronic wasting disease (CWD) of deer, elk, and moose. Soil represents a plausible environmental reservoir of scrapie and CWD agents, which can persist in the environment for years. Attachment to soil particles likely influences the persistence and infectivity of prions in the environment. Effective methods to inactivate TSE agents in soil are currently lacking, and the effects of natural degradation mechanisms on TSE infectivity are largely unknown. An improved understanding of the processes affecting the mobility, persistence, and bioaviailability of prions in soil is needed for the management of TSE-contaminated environments.  相似文献   

9.
Thorium concentrations at Kirtland Air Force Base training sites in Albuquerque, NM, have been previously described; however, the mechanisms of thorium migration were not fully understood. This work describes the processes affecting thorium mobility in this semiarid soil, which has implications for future remedial action. Aqueous extraction and filtration experiments have demonstrated the colloidal nature of thorium in the soil, due in part to the low solubility of thorium oxide. Colloidal material was defined as that removed by a 0.22-microm or smaller filter after being filtered to nominally dissolved size (0.45 microm). Additionally, association of thorium with natural organic matter is suggested by micro- and ultrafiltration methods, and electrokinetic data, which indicate thorium migration as a negatively charged particle or anionic complex with organic matter. Soil fractionation and digestion experiments show a bimodal distribution of thorium in the largest and smallest size fractions, most likely associated with detrital plant material and inorganic oxide particles, respectively. Plant uptake studies suggest this could also be a mode of thorium migration as plants grown in thorium-containing soil had a higher thorium concentration than those in control soils. Soil erosion laboratory experiments with wind and surface water overflow were performed to determine bulk soil material movement as a possible mechanism of mobility. Information from these experiments is being used to determine viable soil stabilization techniques at the site to maintain a usable training facility with minimal environmental impact.  相似文献   

10.
Landscape evaluation: comparison of evaluation methods in a region of Spain   总被引:1,自引:0,他引:1  
Landscape evaluation is now widely recognised as a powerful, interdisciplinary, environmental research method. The aim of the present work was to compare two landscape evaluation methods as part of a physical planning process: the cartographic assessment method and the in situ assessment method. This comparison was performed using an area of the Montes de Toledo, in the centre of Spain. Both methods provided similar results for the majority of the landscape units studied. This shows that the cartographic method can be successfully used in landscape evaluation, allowing important savings in terms of fieldwork. However, this is only the case when the information provided by the available maps is sufficiently accurate to allow the correct assignment of coefficients by a panel of experts.  相似文献   

11.
Describing contaminant spatial distribution is an integral component of risk assessment. Application of geostatistical techniques for this purpose has been demonstrated previously. These techniques may provide both an estimate of the concentration at a given unsampled location, as well as the probability that the concentration at that location will exceed a critical threshold concentration. This research is a comparative study between multiple indicator kriging and kriging with the cumulative distribution function of order statistics, with both local and global variograms. The aim was to determine which of the four methods is best able to delineate between "contaminated" and "clean" soil. The four methods were validated with a subset of data values that were not used in the prediction. Method performance was assessed by calculating the root mean square error (RMSE), analysis of variance, the proportion of sites misclassified by each method as either "clean" when they were actually "contaminated" or vice versa, and the expected loss for each misclassification type. The data used for the comparison were 807 topsoil Pb concentrations from the inner-Sydney suburbs of Glebe and Camperdown, Australia. While there was very little difference between the four methods, multiple indicator kriging was found to produce the most accurate predictions for delineating "clean" from "contaminated" soil.  相似文献   

12.
The soil organic partition coefficient (Koc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting Koc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the Koc of hydrophobic organic chemicals (HOCs), over a log Koc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k'w) could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k'w) with various volume fractions of methanol (symbol in text). The important effects of solute activity coefficients in water on k'w and Koc were illustrated. Hence, the correlation between log Koc and log k'w (and log k') exists in the soil. The correlation coefficient (r) of the log Koc vs. log k'w correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log Koc -log k' correlations were no less than 0.968, with (symbol in text)ranging from 0 to 0.50. The smaller the (symbol in text), the higher the r. Therefore, it is recommended that the eluent of smaller (symbol in text), such as water, be used for accurately estimating Koc. Correspondingly, the r value of the log Koc -log k'w correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict Koc indirectly from a correlation with k'w than the reversed-phase liquid chromatographic (RPLC) one.  相似文献   

13.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

14.
Surface covers are used to isolate contaminants in hazardous and low-level radioactive sites for time frames ranging from hundreds of years to millennia or more. In the absence of data for such durations, the long-term performance of surface barriers can only be represented with short-term tests or inferred from analogs and modeling. This paper provides evidence of field performance of soil covers for periods up to 17 yr. The results of lysimeter studies from a semiarid site in Washington State show that a cover design known as the Hanford Barrier, which consists of 1.5 m of silt loam above a sand-gravel capillary break, can nearly eliminate drainage. The results were similar if plants were present or not, demonstrating the robustness of the design. Furthermore, reducing the silt loam thickness to 1.0 m (as might occur via erosion), with or without plants, did not lead to drainage. When irrigated to mimic 3x average precipitation conditions, the vegetated Hanford Barrier continued to prevent drainage. Overall, the results showed no loss in performance during the 17 yr of testing. Only when plants were eliminated completely from the 3x precipitation test did drainage occur (rates ranged from 6 to 16 mm yr(-1)). In a separate test, replacing the top 0.2 m of silt loam with dune sand and reducing the plant cover did not lead immediately to the onset of drainage, but soil matric heads within the silt loam noticeably increased. This observation suggests that dune sand migration onto a surface cover has the potential to reduce a cover's ability to minimize deep drainage.  相似文献   

15.
Rural areas represent approximately 95% of the 14000 km(2) Alabama Black Belt, an area of widespread Vertisols dominated by clayey, smectitic, shrink-swell soils. These soils are unsuitable for conventional onsite wastewater treatment systems (OWTS) which are nevertheless widely used in this region. In order to provide an alternative wastewater dosing system, an experimental field moisture controlled subsurface drip irrigation (SDI) system was designed and installed as a field trial. The experimental system that integrates a seasonal cropping system was evaluated for two years on a 500-m(2) Houston clay site in west central Alabama from August 2006 to June 2008. The SDI system was designed to start hydraulic dosing only when field moisture was below field capacity. Hydraulic dosing rates fluctuated as expected with higher dosing rates during warm seasons with near zero or zero dosing rates during cold seasons. Lower hydraulic dosing in winter creates the need for at least a two-month waste storage structure which is an insurmountable challenge for rural homeowners. An estimated 30% of dosed water percolated below 45-cm depth during the first summer which included a 30-year historic drought. This massive volume of percolation was presumably the result of preferential flow stimulated by dry weather clay soil cracking. Although water percolation is necessary for OWTS, this massive water percolation loss indicated that this experimental system is not able to effective control soil moisture within its monitoring zone as designed. Overall findings of this study indicated that soil moisture controlled SDI wastewater dosing is not suitable as a standalone system in these Vertisols. However, the experimental soil moisture control system functioned as designed, demonstrating that soil moisture controlled SDI wastewater dosing may find application as a supplement to other wastewater disposal methods that can function during cold seasons.  相似文献   

16.
There is a necessity for improved physical understanding of solute transport processes in heterogeneous soil systems. In situ nondestructive techniques like time domain reflectometry (TDR) and fiber optic miniprobes (FOMPs) permit the collection of unique measurements of solute transport processes in soils for the purposes of model development and validation. This study examined the application of TDR and FOMPs to measure solute transport at various points laterally and at two depths in a heterogeneous clay-loam soil. A miscible displacement experiment was performed at a constant irrigation flux to examine the applicability of these probes to field soils. In their first application to a field soil, the FOMPs were successfully calibrated and performed well in measuring solute breakthrough curves. Two flow regimes were identified in the soil profile, the first where lateral spreading of the solute occurred in the surface horizon, followed by convergence into preferential flow pathways in the second transport zone. The measured transport response was heterogeneous with at least two identifiable vertical flow phases. It was demonstrated using transfer function modeling and data from a corresponding laboratory study that the FOMPs were measuring the slower phase, while the TDR probes captured a composite of the fast and slow phases. The combination of these two techniques may be a means to separate solute transport phases in heterogeneous media and relate laboratory column results to field studies.  相似文献   

17.
Olive mill wastewater (OMW), a by-product of the olive-mill industry, is produced in large amounts in Mediterranean countries. The presence of indigenous phosphate deposits in some countries like Tunisia provides an incentive for direct application or local chemical treatment at low cost to improve the solubility of low reactive phosphate rocks (PRs). The use of naturally occurring low-molecular weight organic acids (LMWOAs) that are present in OMW represents a new perspective in PR research and a possible solution for the recycling of the OMW. The present work was aimed at evaluating, under natural situations (field of olive trees), the effects of agronomic application of OMW (amounts applied: 30, 60 m(3) ha(-1)) with PR (amounts applied: 150 kg ha(-1)) on olive trees soil properties. We measured organic C, nitrogen (N), extractable phosphorus (P), exchangeable calcium (Ca), and exchangeable potassium (K), as well as other properties (pH and electrical conductivity). Our data provide evidence that agronomic application of OMW with PR has important effects on soil properties. Increases in organic C, total N, extractable P and exchangeable potassium (K) were found after the first agronomic application of OMW and PR. These increases were only temporary, following the second agronomic application of OMW and PR, significant reductions were detected in the extractable soil P (19.67 mg kg(-1) in the control soil vs. 8.99 mg kg(-1) in the amended soil). Changes in the extractable soil P could alter plant productivity and plant community structure because shifts in nutriment availability can affect the balance between limiting and non-limiting nutrients.  相似文献   

18.
Nonequilibrium sorption plays an active role in the transport of organic contaminants in soil. We applied a two-stage, one-rate model (2S1R) and a new, nonlinear variant (2S1RN) of this model to examine the effects of wastewater irrigation on the sorption kinetics of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in soil. The models were applied to previously published sorption-desorption data sets, which showed pronounced deviations between sorption curves and desorption curves (sorption-desorption hysteresis). Moreover, the slopes of the desorption curves decreased with decreasing concentration. Different treatments had been used, and two experimental time steps (2 and 14 d) were used. Treatments considered were lipid removal, fulvic and humic acid removal, and untreated soil. The 2S1R model was unable to reproduce the observed type of hysteresis, but the 2S1RN model, which assumes that the sorption-desorption process follows a power function relationship, was able to reproduce the observed type of hysteresis. Visually, applying the new model improved the model fits in all test cases. Statistically, as tested by an extra sum of squares analysis, the new model performed significantly better in 50% of all test cases. According to an example simulation, the choice of the sorption model has a considerable impact on the prediction of atrazine transport in soil.  相似文献   

19.
In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions.  相似文献   

20.
Biodiversity conservation and management of natural resources are the best options to restore and increase productivity of degrading pastureland in dry areas. Hence, arthropod abundance, organic matter, respiration, and dehydrogenase activity were measured in canopy zone soil of Prosopis cineraria (PC), Acacia nilotica (AN), Zizyphus nummularia (ZN), Capparis decidua (CD), and Acacia senegal (AS) associated with grasses with a view to establish interrelation for productivity enhancement of pastureland. Pure grass bock outside tree canopy was control plot. Acari, Myriapoda, Coleoptera, Isoptera, Collembola, and other soil arthropods were the major soil faunal groups. Integration of tree in pastureland enhanced population of soil arthropod by 9–65-fold in May 2001 and 8–13-fold in August/September as compared with control. The trends of changes in soil organic matter (SOM), soil respiration (SR), and dehydrogenase activity (DHA) were similar to the changes in soil arthropod population, indicating the role of soil fauna in facilitating biochemical processes and soil fertility. Two, eight, and nine times greater SOM, SR, and DHA, respectively, in silvipastoral system than the values in control suggest the beneficial effects of trees on improvement in biochemical processes and thus biodiversity in pastureland, as supported by negative values of relative tree effects (RTE). Microbial activities were highest in the ZN system, which had highest abundance of soil arthropods. In the other systems, CD and AS systems showed greater soil arthropod abundance and biological activities than with the PC and AN systems. Therefore, Z. nummularia-, C. decidua-, and A. senegal-based silvipastoral systems and related soil fauna may be promoted for enhancement of biological activity and productivity of pastureland in desert. The strategy may be adopted for developing a sustainable pedoecosystem in a region of the world where agriculture is notoriously difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号