首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the application of complex integrated models to wastewater systems is useful, it is often difficult to implement and not always suitable for the design of new systems or for their rehabilitation. Integrated simple approaches that allow assessing the environmental performance of urban wastewater systems may be advantageous, especially during the initial phases of the system planning process. This paper presents an original, straightforward approach that can be used for planning, design and operation of urban wastewater systems. The INtegrated Simplified Approach (INSA) combines the concepts of performance indicators with mass balances and can be applied to wastewater systems as a management support tool, particularly in situations where there is lack of data, economic limitations or time constraints. The INSA was applied to the Algés-Alcantara wastewater system to evaluate its environmental performance and to simulate the individual or combined impact of the rehabilitation measures proposed, thus defining their priority. The results clearly indicate that, despite the investment already made upgrading the wastewater treatment plant (WWTP), the proposed interventions must be implemented to ensure an acceptable environmental performance of the system. In addition, the results demonstrate the significant pollution loads present in stormwater, frequently higher than the pollution loads discharged into receiving waters during dry weather.  相似文献   

2.
On-site septic systems require appropriate soil characteristics to provide effective wastewater treatment. The objective of this study was to evaluate siting practices and treatment efficacy of on-site septic systems within the Cannonsville Reservoir watershed (115900 ha) in the state of New York. Using digital soil survey data, a database of on-site conditions was developed from more than 1100 existing septic system siting records. Soil map units were grouped into four classes based on their suitability to meet common septic system design criteria. A geographic information system was found to be a useful tool for assessment and visual display of septic system and landscape information. Geographic information system analysis indicated that while 80% of soils in the watershed were found to have characteristics that interfere with septic system function, 69% of septic systems installed were of designs suited for soils with no or few restrictive parameters. Since the designs of many septic systems have relied heavily on horizontal distance to streams (mean = 130 m) to provide adequate treatment, potential failures would lead to discharge of compounds of environmental concern, such as phosphorus, with public health implications. The results imply that many septic systems functioning in the watershed are in need of design improvements.  相似文献   

3.
Abstract: A model that incorportaes performace data about data about several wastewater management systems is discussed. From these data the excepted behavior of an individual wastewater system or group of systems can be product of the performace probabilities of its individual components. The modeel can be used on a regional scale facilitating land use planning by allowing accurate estimates of performance for a prospective wastewater management system. At this scale it can allow the impact evaluation of new wastewater technology on land use in a region.  相似文献   

4.
ABSTRACT: A free water surface (FWS) constructed wetland was installed at a dairy in Glendale, Arizona, to study the potential of such a wetland to remove nitrogen (N) from wastewater. The study objectives were: (1) to determine N removal from the wastewater, and (2) to evaluate N accumulation in soil and plant tissues. The system consisted of eight cells (70 × 9 × 1.5 m) planted with Typha domingensis, Scirpus validus, and Phragmites australis. The four cells in series were lined with plastic, and the four cells in a parallel series were lined with clay. Cells received approximately 180 m3/d of partially treated dairy effluent. Plant tissues and soil samples were collected above and below ground from 24 locations during one year. Total N removal from wastewater was about 17 percent. Clay‐lined cells accumulated more N in the soil and less N in plant biomass compared with plastic lined cells. Plant biomass accounted for approximately 60 percent of total N accumulated in cells with dense plant communities. Ninety percent of accumulated soil N was organic. Total N accumulated in soil reached a maximum (1,100 mg/kg) eight months after the introduction of wastewater.  相似文献   

5.
Today's land application practices are designed to effectively treat wastes, and have evolved from earlier practices that centered on cheap disposal with less regard for environmental protection. The major objectives of this paper are to (i) review how current land application practices, and our understanding of them, have evolved over time and (ii) explore how science is used (and sometimes misused or ignored) in the development of design, regulation, and management of sustainable land application. Land treatment technologies have been used effectively for the treatment and recycling of many types of wastewaters and organic residuals for many years. Extensive research and demonstration efforts, as well as experience with pilot- and field-scale projects, have provided the information about soil reactions with contaminants in wastewater and organic residuals needed to design and operate sustainable land application projects. Still, systematic research programs are as important today as ever to support studies aimed at producing information on how soil-based treatment and recycling systems work, to address new areas of concerns as they arise, and continue to improve the overall design, performance, and reliability of land application systems as sustainable soil treatment and recycling systems.  相似文献   

6.
Rural areas represent approximately 95% of the 14000 km(2) Alabama Black Belt, an area of widespread Vertisols dominated by clayey, smectitic, shrink-swell soils. These soils are unsuitable for conventional onsite wastewater treatment systems (OWTS) which are nevertheless widely used in this region. In order to provide an alternative wastewater dosing system, an experimental field moisture controlled subsurface drip irrigation (SDI) system was designed and installed as a field trial. The experimental system that integrates a seasonal cropping system was evaluated for two years on a 500-m(2) Houston clay site in west central Alabama from August 2006 to June 2008. The SDI system was designed to start hydraulic dosing only when field moisture was below field capacity. Hydraulic dosing rates fluctuated as expected with higher dosing rates during warm seasons with near zero or zero dosing rates during cold seasons. Lower hydraulic dosing in winter creates the need for at least a two-month waste storage structure which is an insurmountable challenge for rural homeowners. An estimated 30% of dosed water percolated below 45-cm depth during the first summer which included a 30-year historic drought. This massive volume of percolation was presumably the result of preferential flow stimulated by dry weather clay soil cracking. Although water percolation is necessary for OWTS, this massive water percolation loss indicated that this experimental system is not able to effective control soil moisture within its monitoring zone as designed. Overall findings of this study indicated that soil moisture controlled SDI wastewater dosing is not suitable as a standalone system in these Vertisols. However, the experimental soil moisture control system functioned as designed, demonstrating that soil moisture controlled SDI wastewater dosing may find application as a supplement to other wastewater disposal methods that can function during cold seasons.  相似文献   

7.
Rainwater harvesting (RWH) has traditionally been implemented in areas with (semi) arid climates or limited access to potable water supplies; however, recent droughts in the humid southeastern United States have led to increased implementation of RWH systems. The objectives of this study were twofold: (1) present usage characteristics and performance results for four RWH systems installed in humid North Carolina (NC) as compared with systems located in arid/semiarid regions and (2) identify system benefits and modifications that could help improve the performance of RWH systems installed in humid regions of the world. For this study four RWH systems were installed in NC. Their usage was monitored for at least one year and compared with similar studies. Results revealed that dedicated water uses and usage characteristics for RWH systems in NC differed from those previously reported in the literature. Two of the systems studied met 100 and 61% of the potable water demand with designated uses of animal kennel flushing and greenhouse irrigation, respectively. The designated uses yielding the greatest potable water replacement were often seasonal or periodic, thus necessitating the need for identifying and implementing secondary objectives for these systems, namely, stormwater management. Otherwise, the expense and effort required to implement RWH systems in humid areas will most likely preclude their use.  相似文献   

8.
Integrated Risk Framework for Onsite Wastewater Treatment Systems   总被引:1,自引:0,他引:1  
Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.  相似文献   

9.
Spray irrigation of forested land can provide an effective system for nutrient removal and treatment of municipal wastewater. Evolution of N2 + N2O from denitrifying activity is an important renovation pathway for N applied to forested land treatment systems. Federal and state guidance documents for design of forested land treatment systems indicate the expected range for denitrification to be up to 25% of applied N, and most forest land treatment systems are designed using values from 15 to 20% of applied N. However, few measurements of denitrification following long-term wastewater applications at forested land treatment sites exist. In this study, soil N2 + N2O-N evolution was directly measured at four different landscape positions (hilltop, midslope, toe-slope, and riparian zone) in a forested land treatment facility in the Georgia Piedmont that has been operating for more than 13 yr. Denitrification rates within effluent-irrigated areas were significantly greater than rates in adjacent nonirrigated buffer zones. Rates of N2 + N2O-N evolved from soil in irrigated forests ranged from 5 to 10 kg ha(-1) yr(-1) N on the three upland landscape positions and averaged 38 kg ha(-1) yr(-1) N within the riparian zone. The relationship between measured riparian zone denitrification rates and soil physical and chemical properties was poor. The best relationship was with soil temperature, with an r2 of 0.18. Overall, on a landscape position weighted basis, only 2.4% of the wastewater-applied N was lost through denitrification.  相似文献   

10.
Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRD-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coli concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.  相似文献   

11.
Current Irish guidelines require a comprehensive site assessment of a percolation area for wastewater disposal before planning permission is granted for dwellings in rural areas. For a site to be deemed suitable, the subsoil must have a percolation value equivalent to a field saturated hydraulic conductivity in the range 0.08 to 4.2 m d(-1) using a falling head percolation test. A minimum of 1.2 m of unsaturated subsoil must also exist below the invert of the percolation area receiving effluent from a septic tank (or 0.6 m for secondary treated effluent). During a 2-yr period, the three-dimensional performance of four percolation areas treating domestic wastewater was monitored. At each site samples were taken at 0, 10, and 20 m along each of the four percolation trenches at depths of 0.3, 0.6, and 1.0 m below each trench to ascertain the attenuation effects of the unsaturated subsoil. The two sites with septic tanks installed performed at least as well as the other two sites with secondary treatment systems installed and appeared to discharge a better quality effluent in terms of nutrient load. An average of 2.1 and 6.8 g total N d(-1) remained after passing through 1-m depth of subsoil beneath the trenches receiving septic tank effluent compared with 12.7 and 16.7 g total N d(-1) on the sites receiving secondary effluent. The research also indicates that the septic tank effluent was of an equivalent quality to the secondary treated effluent in terms of indicator bacteria (E. coli) after percolating through 0.6-m depth of unsaturated subsoil.  相似文献   

12.
The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.  相似文献   

13.
Properly functioning on-site wastewater systems (OWS) are an integral component of the wastewater system infrastructure necessary to renovate wastewater before it reaches surface or ground waters. There are a large number of factors, including soil hydraulic properties, effluent quality and dispersal, and system design, that affect OWS function. The ability to evaluate these factors using a simulation model would improve the capability to determine the impact of wastewater application on the subsurface soil environment. An existing subsurface drip irrigation system (SDIS) dosed with sequential batch reactor effluent (SBRE) was used in this study. This system has the potential to solve soil and site problems that limit OWS and to reduce the potential for environmental degradation. Soil water potentials (Psi(s)) and nitrate (NO(3)) migration were simulated at 55- and 120-cm depths within and downslope of the SDIS using a two-dimensional code in HYDRUS-3D. Results show that the average measured Psi(s) were -121 and -319 cm, whereas simulated values were -121 and -322 cm at 55- and 120-cm depths, respectively, indicating unsaturated conditions. Average measured NO(3) concentrations were 0.248 and 0.176 mmol N L(-1), whereas simulated values were 0.237 and 0.152 mmol N L(-1) at 55- and 120-cm depths, respectively. Observed unsaturated conditions decreased the potential for NO(3) to migrate in more concentrated plumes away from the SDIS. The agreement (high R(2) values approximately 0.97) between the measured and simulated Psi(s) and NO(3) concentrations indicate that HYDRUS-3D adequately simulated SBRE flow and NO(3) transport through the soil domain under a range of environmental and effluent application conditions.  相似文献   

14.
ABSTRACT: In arid regions where populations are expanding and water is scarce, people are searching for ways to conserve and reuse water. One way homeowners can conserve water is by recycling graywater‐wastewater from household sinks, showers, bathtubs, and washing machines. Graywater is used mostly for landscape irrigation. Since graywater is wastewater, reusing it raises concerns about disease transmission, either by contact with the water or the irrigated soil. The purpose of this study was to assess how factors such as number and age of household occupants, types of graywater storage, and sources of graywater used affect the microbial quality of graywater and soil irrigated with graywater. Samples were collected over twelve months from eleven Tucson, Arizona households recycling graywater. Samples of graywater, soil irrigated by graywater, and soil irrigated by potable water were collected. We found that graywater irrigation causes a statistically significant increase in levels of fecal coliforms in soil when compared to soil irrigated with potable water. Graywater from the kitchen sink significantly increases levels of these bacteria in water and soil. Children also cause a statistically significant increase in fecal coliform levels in graywater and soil, possibly introducing a small amount of additional risk in graywater reuse.  相似文献   

15.
ABSTRACT: About one-third of all West Virginians obtain domestic water from private water wells. In this research, mail and telephone surveys were used to investigate household responses to bacteria, mineral, and organic chemical contamination of domestic water supplies. Of households who were informed of contamination and acknowledged the problem, over 85 percent took action to avoid exposure to water contamination problems. The most common action was to clean and/or repair the water system (55.9 percent of valid surveys). Approximately 45 percent of households made investments of either a water treatment system, a new water source, or correction of contamination source. The average, annual economic cost of rural household actions was $320 for bacteria, $357 for minerals, and $1,090 for organic contamination. These economic costs represent a lower bound estimate for rural household willingness-to-pay (WTP) for a reduction in domestic water contamination from government action. On average, investment actions had lower annual economic costs than noninvestment actions of boiling and hauling water so that households who undertook investment actions in response to water contamination would have a lower WTP for government action to reduce water contamination. When effectiveness of water treatment systems was evaluated, treatment systems which require minimal household maintenance were found to reduce exposure to water contamination to safe levels as households intended when they installed the system. Treatment systems which were commonly ineffective included those which required continual maintenance (e.g., chiorinators) or were not designed to solve the contaminant problem for which they were purchased (e.g., filter systems for bacteria).  相似文献   

16.
Summary This study is carried out to propose an appropriate treatment technology for wastewater discharged from a flavor production factory. Industrial wastewater discharged from this factory ranges between 50–70 m3/d with an average value of 60 m3/d. The major source of pollution in this factory is due to cleaning of the vessels therefore the treatment has been carried out on the end-of pipe wastewater. The wastewater is characterized by high values of COD, BOD, TSS and Oil and grease 4646, 2298, 1790 and 626 mg/l respectively. Primary sedimentation of the wastewater for four hours reduced the COD, BOD, TSS and Oil and grease by 43, 47, 80 and 74%, respectively. For the treatment of the produced wastewater, the biological treatment process such as activated sludge, rotating biological contactor (RBC), up-flow anaerobic sludge bed reactor (UASB) have been selected. The results from each treatment process proved to be efficient for the treatment of such wastewater. The treated wastewater characteristics are in compliance with the Egyptian law which regulates the discharge of industrial wastewater to the sewerage system. The RBC was selected and installed by the factory as it has the advantage of low operating and maintenance costs. The factory RBC performance was monitored; characteristics of the treated effluent in terms of oil and grease, COD, BOD and TSS were 27, 362, 139 and 95 mg/l, respectively.  相似文献   

17.
18.
Rapid economic growth and urbanization in China have resulted in great water consumption in recent years. China has been facing increasingly severe water shortage crisis, especially in urban areas. This paper focuses on performance analysis for regional urban water use and wastewater decontamination systems in China. To this end, a DEA-based approach is developed. In the proposed approach, the efficiency of the system is decomposed into water use efficiency and wastewater decontamination efficiency. In the wastewater decontamination sub-system, the purified wastewater (reusable water) is treated as a desirable output; while in the water use sub-system, it is incorporated as a fixed input, which cannot be decreased in the process of efficiency optimization. The efficiency of the system is defined as the average of the two sub-systems’ efficiencies. The proposed approach can find inefficiencies caused by the internal factors between sub-systems, which cannot be identified using the traditional DEA approaches. We finally apply the proposed approach to analyze the efficiencies of regional urban water use and wastewater decontamination systems in China. Based on the application results, some findings and implications for efficiency improvement of urban water management in China are achieved.  相似文献   

19.
ABSTRACT: A comprehensive mathematical model (Urban Wastewater Management Model) has been developed to continuously simulate time-varying wastewater flows and qualities in complex metropolitan combined sewerage systems. The model serves three functions: (1) assessment of existing or planned system performance in relation to other wastewater discharges in either a metropolitan or river basin area; (2) determination of the optium operation or automatic control of existing or planned systems during rainstorms; and (3) determination of the most economically feasible combination of design alternatives for improving or expanding existing systems to meet specified performance criteria. The model provides an efficient engineering tool for evaluating and controlling pollutant discharges from combined sewerage systems (including treatment plants) to receiving waters, while considering the time and spacial variations of rainfall and dry-weather flows and qualities as well as economic constraints.  相似文献   

20.
Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号