首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions.  相似文献   

2.
Intensively managed grasslands are potentially a large source of NH3, N2O, and NO emissions because of the large input of nitrogen (N) in fertilizers. Addition of nitrification inhibitors (NI) to fertilizers maintains soil N in ammonium form. Consequently, N2O and NO losses are less likely to occur and the potential for N utilization is increased, and NH3 volatilization may be increased. In the present study, we evaluated the effectiveness of the nitrification inhibitor 3,4-dimethylpyrazol phosphate (DMPP) on NH3, N2O, NO, and CO2 emissions following the application of 97 kg N ha(-1) as ammonium sulfate nitrate (ASN) and 97 kg NH4+ -N ha(-1) as cattle slurry to a mixed clover-ryegrass sward in the Basque Country (northern Spain). After slurry application, 16.0 and 0.7% of the NH4+ -N applied was lost in the form of N2O and NO, respectively. The application of DMPP induced a decrease of 29 and 25% in N2O and NO emissions, respectively. After ASN application 4.6 and 2.8% of the N applied was lost as N2O and NO, respectively. The application of DMPP with ASN (as ENTEC 26; COMPO, Münster, Germany) unexpectedly did not significantly reduce N2O emissions, but induced a decrease of 44% in NO emissions. The amount of NH4+ -N lost in the form of NH3 following slurry and slurry + DMPP applications was 7.8 and 11.0%, respectively, the increase induced by DMPP not being statistically significant. Levels of CO2 emissions were unaffected in all cases by the use of DMPP. We conclude that DMPP is an efficient nitrification inhibitor to be used to reduce N2O and NO emissions from grasslands.  相似文献   

3.
With a growing world population and global warming, we are challenged to increase food production while reducing greenhouse gas (GHG) emissions. We studied the effects of biochar (BC) and hydrochar (HC) produced via pyrolysis or hydrothermal carbonization, respectively, on GHG fluxes in three laboratory incubation studies. In the first experiment, ryegrass was grown in sandy loam mixed with equal amounts of a nitrogen-rich peanut hull BC, compost, BC+compost, double compost, or no addition (control); wetting-drying cycles and N fertilization were applied. Biochar with or without compost significantly reduced NO emissions and did not change the CH uptake, whereas ryegrass yield was significantly increased. In the second experiment, 0% (control) or 8% (w/w) of BC (peanut hull, maize, wood chip, or charcoal) or 8% HC (beet chips or bark) was mixed into a soil and incubated at 65% water-holding capacity (WHC) for 140 d. Treatments included simulated plowing and N fertilization. All BCs reduced NO emissions by ~60%. Hydrochars reduced NO emissions only initially but significantly increased them after N fertilization to 302% (HC-beet) and 155% (HC-bark) of the control emissions, respectively. Large HC-associated CO emissions suggested that microbial activity was stimulated and that HC was less stable than BC. In the third experiment, nutrient-rich peanut hull BC addition and incubation over 1.5 yr at high WHCs did not promote NO emissions. However, NO emissions were significantly increased with BC after NHNO addition. In conclusion, BC reduced NO emissions and improved the GHG-to-yield ratio under field-relevant conditions. However, the risk of increased NO emissions with HC addition must be carefully evaluated.  相似文献   

4.
Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.  相似文献   

5.
Ammonia (NH(3)) emissions from animal systems have become a primary concern for all of livestock production. The purpose of this research was to establish the relationship of nitrogen (N) emissions to specific components of swine production systems and to determine accurate NH(3) emission factors appropriate for the regional climate, geography, and production systems. Micrometeorological instrumentation and gas sensors were placed over two lagoons in North Carolina during 1997-1999 to obtain information for determining ammonia emissions over extended periods and without interfering with the surrounding climate. Ammonia emissions varied diurnally and seasonally and were related to lagoon ammonium concentration, acidity, temperature, and wind turbulence. Conversion of significant quantities of ammonium NH(4)(+) to dinitrogen gas (N(2)) were measured in all lagoons with the emission rate largely dependent on NH(4)(+) concentration. Lagoon NH(4)(+) conversion to N(2) accounted for the largest loss component of the N entering the farm (43% as N(2)); however, small amounts of N(2)O were emitted from the lagoon (0.1%) and from field applications (0.05%) when effluent was applied nearby. In disagreement with previous and current estimates of NH(3) emissions from confined animal feeding operation (CAFO) systems, and invalidating current assumptions that most or all emissions are in the form of NH(3), we found much smaller NH(3) emissions from animal housing (7%), lagoons (8%), and fields (2%) using independent measurements of N transformation and transport. Nitrogen input and output in the production system were evaluated, and 95% of input N was accounted for as output N from the system.  相似文献   

6.
Biochar is the product of pyrolysis produced from feedstock of biological origin. Due to its aromatic structure and long residence time, biochar may enable long-term carbon sequestration. At the same time, biochar has the potential to improve soil fertility and reduce greenhouse gas (GHG) emissions from soils. However, the effect of biochar application on GHG fluxes from soil must be investigated before recommendations for field-scale biochar application can be made. A laboratory experiment was designed to measure carbon dioxide (CO) and nitrous oxide (NO) emissions from two Irish soils with the addition of two different biochars, along with endogeic (soil-feeding) earthworms and ammonium sulfate, to assist in the overall evaluation of biochar as a GHG-mitigation tool. A significant reduction in NO emissions was observed from both low and high organic matter soils when biochars were applied at rates of 4% (w/w). Earthworms significantly increased NO fluxes in low and high organic matter soils more than 12.6-fold and 7.8-fold, respectively. The large increase in soil NO emissions in the presence of earthworms was significantly reduced by the addition of both biochars. biochar reduced the large earthworm emissions by 91 and 95% in the low organic matter soil and by 56 and 61% in the high organic matter soil (with and without N fertilization), respectively. With peanut hull biochar, the earthworm emissions reduction was 80 and 70% in the low organic matter soil, and only 20 and 10% in the high organic matter soil (with and without N fertilization), respectively. In high organic matter soil, both biochars reduced CO efflux in the absence of earthworms. However, soil CO efflux increased when peanut hull biochar was applied in the presence of earthworms. This study demonstrated that biochar can potentially reduce earthworm-enhanced soil NO and CO emissions. Hence, biochar application combined with endogeic earthworm activity did not reveal unknown risks for GHG emissions at the pot scale, but field-scale experiments are required to confirm this.  相似文献   

7.
Nitrous oxide is a greenhouse gas, and NO and NO2 play a key role in atmospheric chemistry. Nitrous oxide, NO, and NO2 fluxes from fertilized soils were measured six times per day by an automated flux monitoring system for one year, beginning on 21 May 1998. Pac choi (Brassica spp.) was cultivated for two months, and the plots were left fallow the remainder of the year. Two types of manure, poultry manure (PM) and swine manure (SM), and a chemical fertilizer, urea, were applied to the soil. The total amount of nitrogen applied in each case was 15 g N m(-2). The total fluxes from PM, SM, and urea for the year were 184, 61.3, and 44.8 mg N m(-2) for N2O, respectively; 9.95, 16.6, and 148 mg N m(-2) for NO, respectively; and -6.21, -7.23, and -7.84 mg N m(-2) for NO2, respectively. A negative correlation was found between the NO flux and the NO concentration of the chamber air just after the chamber was closed, when a flux from the atmosphere to soil was observed for 10 months. The mean gross NO production, the NO uptake rate constant, and the apparent compensation point for this period were 0.79 to 0.95 microg N m(-2) h(-1), 120 to 128 L m(-2) h(-1), and 5.65 to 7.35 ppbv, respectively.  相似文献   

8.
Various physical factors affecting the release rate of naturally occurring Cryptosporidium parvum oocysts and Giardia duodenalis cysts from dairy manure disks to sprinkled water were studied. The investigated factors included temperature (5 or 23 degrees C), manure type (calf manure, a 50% calf and 50% cow manure mixture, and a 10% calf and 90% cow manure mixture), and water application method (mist or drip) and flow rate. Effluent concentrations of manure and (oo)cysts were always several orders of magnitude below their initial concentration in the manure, decreased gradually, and exhibited persistent concentration tailing. Release of manure and (oo)cysts were found to be related by a constant factor, the so-called release efficiency of (oo)cysts. A previously developed (oo)cyst release model that included these release efficiencies provided a satisfactory simulation of the observed release. An effect of temperature on the release of manure and (oo)cysts was not apparent. The manure and (oo)cyst release rates from cow manure decreased faster than those from calf manure, and (oo)cyst release efficiencies from cow manure were higher than those from calf manure. In comparison with mist application, dripping water resulted in higher release rates of manure and (oo)cysts and in higher (oo)cyst release efficiencies due to the increased mechanical forces associated with droplet impact. Mist application at a higher flow rate resulted in faster release, but did not affect the (oo)cyst release efficiencies. The data and modeling approach described herein provide insight and an enhanced ability to describe the influence of physical factors on (oo)cyst release.  相似文献   

9.
There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow(-1) h(-1) from dry cows and manure and 0.7 and 1.27 g cow(-1) h(-1) from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4 emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow(-1) h(-1) for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P < 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation.  相似文献   

10.
Dairy farm effluent (DFE) comprises animal feces, urine, and wash-down water collected at the milking shed. This is collected daily during the milking season and sprayed onto grazed dairy pastures. Urine patches in grazed pastures make a significant contribution to anthropogenic N(2)O emissions. The DFE could potentially mitigate N(2)O emissions by influencing the N(2)O to dinitrogen (N(2)) ratio, since it contains water-soluble carbon (WSC). Alternatively, DFE may enhance N(2)O emissions from urine patches. The application of DFE may also provide a substrate for the production of CO(2) in pasture soils. The effects of DFE on the CO(2) and N(2)O emissions from urine patches are unknown. Thus a laboratory experiment was performed where repeated DFE applications were made to repacked soil cores. Dairy farm effluent was applied at 0, 7, or 14 d after urine deposition. The urine was applied once on Day 0. Urine contained (15)N-enriched urea. Measurements of N(2)O, N(2), and carbon dioxide (CO(2)) fluxes, soil pH, and soil inorganic N concentrations were made. After 43 d the DFE had not mitigated N(2)O fluxes from urine patches. A small increase in the N(2)O flux occurred from the urine-treated soils where DFE was applied 1 wk after urine deposition. The amount of WSC applied in the DFE proved to be insignificant compared with the amount of soil C released as CO(2) following urine application. The priming of soil C in urine patches has implications for the understanding of soil C processes in grazed pasture ecosystems and the budgeting of C within these ecosystems.  相似文献   

11.
Buildings housing cattle contribute 19% (42 kt NH3-N yr(-1)) of total UK ammonia (NH3) emissions. In the UK there is not usually an abrupt switch from cattle being kept inside to when they are turned out to graze 24 h a day. Moreover, during the summer dairy cows return to the farm twice a day to be milked and may spend some time inside buildings. Hence, there is uncertainty over the treatment of the transitional and summer periods when inventorying NH3 emissions. The aim of this study was to measure, under controlled and replicated conditions, the relationship between the number of hours cattle spend in buildings and the NH3 emissions from those buildings. Our results indicate that NH3 emissions decrease as the proportion of the day cattle spend in the buildings decreases, although the trend is not linear. Daily emission rates from cattle housed for 2 h ranged from 1.6 to 6.2 g NH3-N lu(-1) whereas emissions from cattle housed for 24 h ranged from 8.1 to 24.1 g NH3-N lu(-1). To significantly reduce NH3 emissions in comparison to those from buildings where cattle are housed for 24 h, the occupancy would have to be reduced to no more than 6 h each day. Thus, the strategy of extending the grazing season by allowing cattle to graze for c. 4 to 12 h during the winter is unlikely to reduce NH3 emissions from buildings or overall.  相似文献   

12.
Ammonia emissions after spreading animal manure contribute a major share to N losses from agriculture. There is an increasing interest in anaerobic co-digestion of liquid manure with organic additives. This fermentation results in a change of physical and chemical parameters of the slurry. Among these are an increased pH and ammonium content, implying a higher risk of NH3 losses from fermentation products. To compare different application techniques and the effect of fermentation on NH3 volatilization, we used the standard comparison method and tested it for reliability. This method seems to be perfectly suited for experiments with a large number of treatments and replicates if prerequisites concerning the experimental layout are considered. We tested four different application techniques on arable and grassland sites. The more the substrate was incorporated into the soil or applied near the soil surface on the grassland site, the less NH3 was lost. Injection of the substrate reduced losses to less than 10% of applied NH4+ on both sites, whereas losses after splash plate application amounted to more than 30%. Trail shoe application on grassland performed as well as injection. Harrowing on arable land also reduced emissions efficiently, if harrowing occurred within the first 2 h after application. Emissions from trail hose-applied co-fermentation product were not greater than from unfermented slurry. Better infiltration of the less viscous substrate seemed to have compensated for the increased loss potential.  相似文献   

13.
The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.  相似文献   

14.
Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.  相似文献   

15.
The potential atmospheric impact of constructed wetlands (CWs) should be examined as there is a worldwide increase in the development of these systems. Fluxes of N(2)O, CH(4), and CO(2) have been measured from CWs in Estonia, Finland, Norway, and Poland during winter and summer in horizontal and vertical subsurface flow (HSSF and VSSF), free surface water (FSW), and overland and groundwater flow (OGF) wetlands. The fluxes of N(2)O-N, CH(4)-C, and CO(2)-C ranged from -2.1 to 1000, -32 to 38 000, and -840 to 93 000 mg m(-2) d(-1), respectively. Emissions of N(2)O and CH(4) were significantly higher during summer than during winter. The VSSF wetlands had the highest fluxes of N(2)O during both summer and winter. Methane emissions were highest from the FSW wetlands during wintertime. In the HSSF wetlands, the emissions of N(2)O and CH(4) were in general highest in the inlet section. The vegetated ponds in the FSW wetlands released more N(2)O than the nonvegetated ponds. The global warming potential (GWP), summarizing the mean N(2)O and CH(4) emissions, ranged from 5700 to 26000 and 830 to 5100 mg CO(2) equivalents m(-2) d(-1) for the four CW types in summer and winter, respectively. The wintertime GWP was 8.5 to 89.5% of the corresponding summertime GWP, which highlights the importance of the cold season in the annual greenhouse gas release from north temperate and boreal CWs. However, due to their generally small area North European CWs were suggested to represent only a minor source for atmospheric N(2)O and CH(4).  相似文献   

16.
The boreal forest is subject to natural and anthropogenic disturbances, but the production of greenhouse gases as a result of flooding for hydroelectric power generation has received little attention. It was hypothesized that flooded soil would result in greater CO(2) and CH(4) emissions and carbon (C) fractionation compared with non-flooded soil. To evaluate this hypothesis, soil C and nitrogen (N) dynamics, CO(2) and CH(4) mean production rates, and (13)C fractionation in laboratory incubations at 14 and 21 degrees C under non-flooded and flooded conditions and its effect on labile and recalcitrant C sources were determined. A ferro-humic Podzol was collected at three different sites at the Experimental Lakes Area, Canada, with a high (19,834 g C m(-2)), medium (18,066 g C m(-2)), and low (11,060 g C m(-2)) soil organic C (SOC) stock. Soil organic C and total N stocks (g m(-2)) and concentrations (g kg(-1)) were significantly different (p < 0.05) among soil horizons within each of the three sites. Stable isotope analysis showed a significant enrichment in delta(13)C and delta(15)N with depth and an enrichment in delta(13)C and delta(15)N with decreasing SOC and N concentration. The mean CO(2) and CH(4) production rates were greatest in soil horizons with the highest SOC stock and were significantly higher at 21 degrees C and in flooded treatments. The delta(13)C of the evolved CO(2) (delta(13)C-CO(2)) became significantly enriched with time during decomposition, and the greatest degree of fractionation occurred in the organic Litter, Fungal, and Humic forest soil horizons and in soil with a high SOC stock compared with the mineral horizon and soil with a lower SOC stock. The delta(13)C-CO(2) was significantly depleted in flooded treatments compared with non-flooded treatments.  相似文献   

17.
Much animal manure is being applied to small land areas close to animal confinements, resulting in environmental degradation. This paper reports a study on the emissions of ammonia (NH3), methane (CH4), and nitrous oxide (N2O) from a pasture during a 90-d period after pig slurry application (60 m3 ha-1) to the soil surface. The pig slurry contained 6.1 kg total N m-3, 4.2 kg of total ammoniacal nitrogen (TAN = NH3 + NH4) m-3, and 22.1 kg C m-3, and had a pH of 8.14. Ammonia was lost at a fast rate immediately after slurry application (4.7 kg N ha-1 h-1), when the pH and TAN concentration of the surface soil were high, but the loss rate declined quickly thereafter. Total NH3 losses from the treated pasture were 57 kg N ha-1 (22.5% of the TAN applied). Methane emission was highest (39.6 g C ha-1 h-1) immediately after application, as dissolved CH4 was released from the slurry. Emissions then continued at a low rate for approximately 7 d, presumably due to metabolism of volatile fatty acids in the anaerobic slurry-treated soil. The net CH4 emission was 1052 g C ha-1 (0.08% of the carbon applied). Nitrous oxide emission was low for the first 14 d after slurry application, then showed emission peaks of 7.5 g N ha-1 h-1 on Day 25 and 15.8 g N ha-1 h-1 on Day 67, and decline depending on rainfall and nitrate (NO3) concentrations. Emission finally reached background levels after approximately 90 d. Nitrous oxide emission was 7.6 kg N ha-1 (2.1% of the N applied). It is apparent that of the two major greenhouse gases measured in this study, N2O is by far the more important tropospheric pollutant.  相似文献   

18.
Treatment of liquid swine manure (LSM) offers opportunities to improve manure nutrient management. However, N2O fluxes and cumulative emissions resulting from application of treated LSM are not well documented. Nitrous oxide emissions were monitored following band-incorporation of 100 kg N ha(-1) of either mineral fertilizer, raw LSM, or four pretreated LSMs (anaerobic digestion; anaerobic digestion + flocculation: filtration; decantation) at the four-leaf stage of corn (Zea mays L.). In a clay soil, a larger proportion of applied N was lost as N2O with the mineral fertilizer (average of 6.6%) than with LSMs (3.1-5.0%), whereas in a loam soil, the proportion of applied N lost as N2O was lower with the mineral fertilizer (average of 0.4%) than with LSMs (1.2-2.4%). Emissions were related to soil NO3 intensity in the clay soil, whereas they were related to water-extractable organic C in the loam soil. This suggests that N2O production was N limited in the clay soil and C limited in the loam soil, and would explain the interaction found between N sources and soil type. The large N2O emission coefficients measured in many treatments, and the contradicting responses among N sources depending on soil type, indicate that (i) the Intergovernmental Panel on Climate Change (IPCC) default value (1%) may seriously underestimate N2O emissions from fine-textured soils where fertilizer N and manure are band-incorporated, and (ii) site-specific factors, such as drainage conditions and soil properties (e.g., texture, organic matter content), have a differential influence on emissions depending on N source.  相似文献   

19.
Accumulation of soluble salts resulting from fertilizer N may affect microbial production of N(2)O and CO(2) in soils. This study was conducted to determine the effects of electrical conductivity (EC) and water content on N(2)O and CO(2) production in five soils under intensive cropping. Surface soils from maize fields were washed, repacked and brought to 60% or 90% water-filled pore space (WFPS). Salt mixtures were added to achieve an initial in situ soil EC of 0.5, 1.0, 1.5 and 2.0 dS m(-1). The soil cores were incubated at 25 degrees C for 10 d. Average CO(2) production decreased with increasing EC at both soil water contents, indicating a general reduction in microbial respiration with increasing EC. Average cumulative N(2)O production at 60% WFPS decreased from 2.0 mg N(2)O-N m(-2) at an initial EC of 0.5 dS m(-1) to 0.86 mg N(2)O-N m(-2) at 2.0 dS m(-1). At 90% WFPS, N(2)O production was 2 to 40 times greater than that at 60% WFPS and maximum N(2)O losses occurred at the highest EC level of 2.0 dS m(-1). Differences in the magnitude of gas emissions at varying WFPS were due to available substrate N and the predominance of nitrification under aerobic conditions (60% WFPS) and denitrification when oxygen was limited (90% WFPS). Differences in gas emissions at varying soil EC may be due to changes in mechanisms of adjustment to salt stress and ion toxicities by microbial communities. Direct effects of EC on microbial respiration and N(2)O emissions need to be accounted for in ecosystems models for predicting soil greenhouse gas emissions.  相似文献   

20.
We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号