首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nannochloris atomus was maintained in exponential growth at photon flux densities (PFD) from 400 to 700 nm, ranging from 10 to 200 mol m-2 s-1. Growth was lightsaturated at PFDs in excess of 100 mol m-2 s-1, with a mean light-saturated growth rate at 23 °C of 1.5×10-5s-1 (1.2 d-1). The light-limited growth rates extrapolated to a compensation PFD for growth that was not significantly different from zero, although no changes in cell numbers were observed in a single culture incubated at a PFD of 1.0 mol m-2s-1. Dark-respiration rates were independent of PFD, averaging 1.7×10-6 mol O2 mol-1 C s-1 (0.14 mol O2 mol-1 C d-1). The maximum photon (quantum) efficiency of photosynthesis was also independent of PFD, with a mean value of 0.12 mol O2 mol-1 photon. The chlorophyll a-specific light absorption cross-section ranged from 3 to 6×10-3 m2 mg-1 chl a and was lowest at low PFDs due to intracellular self-shading of pigments associated with high cell-chlorophyll a contents. The C:chl a ratio increased from 10 to 40 mg C mg-1 chl a between PFDs of 14 and 200 mol m-2 s-1. These new observations for N. atomus are compared with our previous observations for the diatom Phaeodactylum tricornutum in terms of an energy budget for microalgal growth.  相似文献   

2.
Dissolution rates of silica from diatoms decomposing at various temperatures   总被引:12,自引:0,他引:12  
In a study of silica dissolution from diatoms, the rate coefficient (K) h-1 of raw diatom cells was estimated as 4 to 5 times smaller than that of the acid-digested siliceous skeletons. The dissolution rate coefficient at early stage (K1) can be predicted as a function of temperature (T°C): in K1=+T, where is the frequency factor depending on the properties of diatom species, ranging from -7.35 to-`0.38, and the temperature coefficient is 0.0833 for all species. Activation energies were calculated to be 1.37 to 1.38 Kcal mol-1. This equation suggests that the rate coefficient K1 increases by a factor of 2.27 for each 10 C° rise in temperature. This equation will also be applied to a new approach for the fate and behavior of biogenous silica settling through a water column by introducing the term temperature into a model.  相似文献   

3.
Relative rates of the anaerobic decomposition of organic matter in the upper 10 cm of sediment from two stations in central Long Island Sound, USA, were compared. Sediment samples from discrete depth intervas were incubated anoxically and changes in SO 4 = , NH 4 + , bacterial numbers, extractable adenosine triphosphate (ATP), organic matter, and organic carbon were measured as a function of time and temperature. At both stations (15 and 34 m water-depths, respectively), the calculated rates of SO 4 = reduction and NH 4 + production decreased exponentially (approximately) with depth below the sediment-water interface. Over the same depth interval, ATP concentrations dropped by a factor of 6 to 7 and bacterial numbers were lower by a factor of 2 to 3. These decreases in SO 4 = reduction, NH 4 + production, bacterial numbers, and ATP, reflect a change in the physiological state of microbial populations with depth in the sediment and are consistent with the conclusions that the quantity of easily utilizable organic matter changes rapidly below the sediment surface and that food limitation controls the basic depth distribution of microbial activity. The average rates of SO 4 = reduction, 29 to 39 mM year-1 (22°C), in the top 10 cm are similar at both stations studied here, as well as at an additional station from a previous study. In contrast, average NH 4 + production differs by a factor of 2 at the two stations, reflecting differences in the C:N ratio of the organic matter supplied to the sediment surface and differences in particle reworking by macrofauna at each site. The apparent activation energy of SO 4 = reduction was 19±1 kcal mole-1 and that of NH 4 + production, 18±3 kcal mole-1. The overall quantity of carbon required to support the calculated average SO 4 = reduction rate in the top 10 cm is 23 g C m-2 year-1 and represents 36% of all the carbon available to the benthos annually and 11% of the net primary production in the water column. Directly measured fluxes of NH 4 + from sediments to overlying water at both stations agree well with those predicted from production rates obtained by the incubation techniques.  相似文献   

4.
Seasonal pattern of transport pathways and potential sources of PM2.5 in Chengdu during 2012–2013 were investigated based on hourly PM2.5 data, backward trajectories, clustering analysis, potential source contribution function (PSCF), and concentration-weighted trajectory (CWT) method. The annual hourly mean PM2.5 concentration in Chengdu was 97.4 mg·m–3. 5, 5, 5 and 3 mean clusters were generated in four seasons, respectively. Short-distance air masses, which travelled within the Sichuan Basin with no specific source direction and relatively high PM2.5 loadings (>80 mg·m–3) appeared as important pathways in all seasons. These short pathways indicated that emissions from both local and surrounding regions of Chengdu contributed significantly to PM2.5 pollution. The cities in southern Chengdu were major potential sources with PSCF>0.6 and CWT>90 mg·m–3. The northeastern pathway prevailed throughout the year with higher frequency in autumn and winter and lower frequency in spring and summer. In spring, long-range transport from southern Xinjiang was a representative dust invasion path to Chengdu, and the CWT values along the path were 30-60 mg·m–3. Long-range transport was also observed in autumn from southeastern Xinjiang along a northwesterly pathway, and in winter from the Tibetan Plateau along a westerly pathway. In summer, the potential source regions of Chengdu were smaller than those in other seasons, and no long-range transport pathway was observed. Results of PSCF and CWT indicated that regions in Qinghai and Tibet contributed to PM2.5 pollution in Chengdu as well, and their CWT values increased to above 30 mg·m–3 in winter.
  相似文献   

5.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

6.
A method is described for the incubation of undisturbed sediment cores under in situ conditions with the addition of low concentrations of 14C-glucose. Data are presented for respiration, gross uptake and actual uptake rate of glucose by bacteria in sandy, wave-washed beaches of the Baltic Sea. On the average, the bacteria respired 8% of the total glucose taken up. The gross uptake measured was between 2.3×10-3 and 6.8×10-3 g 14C-glucose g sediment-1 (dry weight) h-1 (average 4.7×10-3 g g-1 h-1). Minima in the gross uptake rate corresponded with maxima in the concentration of natural free dissolved glucose. For the actual uptake rate, however, very similar uptake rates were calculated for the sediments examined (between 1.4×10-1 and 1.9×10-1 g glucose g-1 h-1, average 1.7×10-1 g g-1 h-1).Publication No. 183 of the Joint Research Program at Kiel University (Sonderforschungsbereich 95 der Deutschen Forschungsgemeinschaft).  相似文献   

7.
Growth and photosynthetic properties of the marine dinoflagellate Amphidinium carterae Hulbert were examined under continuous illumination in batch cultures at four different irradiances between 2 and 150 E m-2 s-1. The slope of both cell- and Chl a-based photosynthesis versus the irradiance curves was greatest for cells grown at 15 E m-2 s-1. The relative Chl a values cell-1 were 1, 1.5 and 2 for cultures grown at 150, 80 and 15 E m-2 s-1, respectively. A low-temperature (-196°C) fluorescence technique was used to examine cells for photoinhibiton. Photoinhibition was greatest for cells grown at 150 E m-2 s-1. However, significant photoinhibition of this species was noted even at 80 E m-2 s-1. No significant difference in the fluorescence pattern was found between cells grown at 2 and 15 E m-2 s-1. Time course studies indicate that photoinhibition may occur within 2 h following exposure to 350 E m-2 s-1 in cells grown at 15 E m-2 s-1 and is reversible when light levels are lowered within 4 h. The ecological significance of phytoplankton unable to cope with excess photosynthetic excitation energy is discussed.  相似文献   

8.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

9.
Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leachability of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during gastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs with organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3 , F, SO4 2–, and Cl) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.
  相似文献   

10.
Adult Elasmopus rapax, collected from the eastern coast of Venezuela in 1990, were exposed to seawater containing various CdCl2 concentrations ranging from 0.25 to 5.5 mol l-1. The 48-h and 96-h LC50 values obtained were 4.0 and 1.6 mol Cd l-1, respectively. In amphipods exposed to 1 mol Cd l-1 for up to 240 h, the apparent rate of cadmium uptake was higher in dead animals (most of which had molted during the preceding 24 to 48 h) than in those which survived throughout the treatments without molting. Thus, whole-body cadmium content reached 1.74 mol g-1 dry weight (dw) in the former and only 0.85 mol g-1 dw in the latter; the higher body Cd-load may have caused the increased mortality observed in molters. On exposure to cadmium levels above 0.5 mol l-1 the oxygen consumption rate of non-molters decreased from 2.2 to about 1.5 ml O2 g-1 dw h-1 over the first 24 h, remaining unchanged thereafter. The results place E. rapax among the most sensitive marine organisms yet studied concerning cadmium toxicity, and emphasize the usefulness of the Amphipoda as bioindicators and research tools for bioassays.  相似文献   

11.
Adults and furciliae of Thysanoessa longicaudata (Krøyer) taken in continuous plankton records (CPR) in 1966 and 1967 were examined and measured. The measurements were converted to biomass using a length/weight equation, and net production values were calculated from these data. Two generations were spawned annually in the eastern North Atlantic Ocean and only one in the colder western waters and in the Norwegian Sea. The timing of reproduction in the spring was correlated with the mean sea-surface temperature. The highest annual production values (up to 12.24 mg dry weight m-3 year-1) were recorded in the eastern areas, where the ratio between production and biomass was usually between 4:1 and 8:1 compared with ratios usually between 2:1 and 3:1 in the western waters. The values for daily production per individual ranged from 3.34 g dry weight day-1 to 17.54 g day-1. Mortality in the early stages of development was calculated as about 98.2% of the eggs produced.  相似文献   

12.
Sea anemones (Aiptasia pulchella) containing zooxanthellae (Symbiodinium microadriaticum) were maintained in a long-term laboratory culture on a 12 h light (100 E m-2 s-1):12 h dark cycle. Photosynthetic oxygen production was measured for the symbiotic association and for freshlyisolated zooxanthellae. Light utilization efficiencies () were similar for both sets of zooxanthellae, suggesting negligible shading of zooxanthellae by animal tissue in this association. Whereas freshly-isolated zooxanthellae were photoinhibited at high irradiances (800 to 1 800 E m-2 s-1), zooxanthellae in the host continued to function at photosynthetic capacity. Time of day may influence photosynthetic measurements in symbiotic organisms, as it was found that photosynthesis in A. pulchella followed a diel periodicity at both light-saturating (1 200 E m-2 s-1) and subsaturating (150 E m-2 s-1) irradiances. There was a peak period of photosynthesis between 12.00 and 14.00 hrs. Light stimulated dark respiration rates of A. pulchella. Dark respiration of sea anemones increased somewhat towards the end of the light cycle and was always greater after exposure to high irradiances.  相似文献   

13.
V. Talbot 《Marine Biology》1987,94(4):557-560
Regression analysis on data collected from Port Phillip Bay and Western Port, Australia in 1979 shows that there is a significant equilibrium relationship between total recoverable lead in seawater and its concentrations in the mussel Mytilus edulis (P<0.001). The concentration of lead in seawater should not exceed 1.27 g l-1 if the mussel is not to reach a lead concentration of 2.5 mg kg-1 wet weight, a value frequently used as a food standard for human consumption. When a lead value of 2.5 mg kg-1 wet weight is reached, the concentration factor by mussels for lead from seawater is 1969. The critical value of 1.27 g l-1 could be used as a marine water-quality criterion for lead in waters where mussels are harvested.  相似文献   

14.
Measurements of the filtration rate and oxygen consumption of the bivalve Mercenaria mercenaria (L.) have been made using flowing water systems, and then combined with growth and survivorship data to construct an energy budget for a tidal-flat population in Southampton Water. Estimated consumption (1292 kcal m-2 year-1) is mainly deposited as faeces and pseudofaeces (759 kcal) or excreted (160 kcal); 29% (374 kcal) is assimilated, of which 241 kcal are used for respiration, 72 kcal for flesh production and 61 kcal for gamete production. M. mercenaria contributes significantly to other trophic groups in Southampton Water; predators remove an estimated 55 kcal m-2 year-1, and 829 kcal pass to the scavenger/decomposer chain.  相似文献   

15.
The shortterm (10–22 d) effect of Zn, Hg, Cu, Cd, Pb, and Ni on the length growth of Mytilus edulis is studied. Significant reductions of growth rate was found at 0.3 g Hgl-1, 3 g Cul-1, 10 g Znl-1, and 10 g Cdl-1 added to the local sea water, while concentrations of up to 200 gl-1 of Pb and Ni had no effect on the growth. With exposure to Cu and Zn, there was a linear reduction in growth rate with increasing metal concentration up to about 6 g Cul-1 and 100 g Znl-1. Above these levels, growth stopped with Cu, while with Zn it was stabilized at about 20% of control growth. When Hg and Cd were added, a curvilinear relationship between growth and metal concentration is indicated. With Hg, growth rate is nearly zero above 3–4 g Hgl-1, while the growth rate was 50% of control after 10 d of exposure to 100 g Cdl-1. At 2 g Cdl-1 there was a significant stimulation of length increase. Observed EC50-values for growth were 0.3–0.4 g Hgl-1, 3–4 g Cul-1, 60 g Znl-1, and 100 g Cdl-1.  相似文献   

16.
The substrate analogue [14C]-methylammonium was used to study ammonium/methylammonium uptake by Symbiodinium microadriaticum (zooxanthellae). The value of the Michaelis constant (K m) for the uptake system was approximately 35 M with methylammonium as substrate; ammonium was a competitive inhibitor of methylammonium uptake, and the K m for ammonium uptake (determined as the inhibition constant, K i, for methylammonium) was 6.6 M. Methylammonium uptake by zooxanthellae was light-dependent. Methylammonium uptake rates of zooxanthellae which had been freshly isolated from the hermatypic coral Acropora formosa (0.85±0.05x10-10 mol min-1 cell-1) were lower than those of axenic cultures of the zooxanthellae from Montipora verrucosa (Acroporidae) grown under various nitrogen regimes (1.6 to 12x10-10 mol min-1 cell-1). Maximum uptake rates were found for ammonium-starved cultured M. verrucosa zooxanthellae (10.2 to 12x10-10 mol min-1 cell-1); M. verrucosa zooxanthellae growing with ammonium as nitrogen source and zooxanthellae which had been freshly isolated from A. formosa gave similar and considerably lower uptake rates (0.85 to 1.6x10-1 mol min-1 cell-1). These results suggest that either coral tissue contains sufficient ammonium to repress synthesis of the uptake system of the algal symbionts or, alternatively, there are additional barriers to ammonium transport for zooxanthellae in vivo.  相似文献   

17.
The activity of Na–K-ATPase was measured in crude homogenates prepared from various organs (leg muscle, pincer muscle, heart, testes, digestive gland, hypodermis, gills 1–9) of shore crabs, Carcinus maenas L., acclimated to salinities ranging between 10 and 50 S (in steps of 10 S). In all salinities tested, Na–K-ATPase activity was highest in posterior gills 7–9 (10–12 mol Pi mg protein-1 h-1), followed by anterior gills 1–6 (ca. 2.5 mol Pi mg protein-1 h-1) and the other organs (in most cases far below 2mol Pi mg protein-1 h-1). In gills only, Na–K-ATPase activity was salinity-dependent, with the highest values in the lowest salinities and vice versa. In gills 7–9, Na–K-ATPase activity was increased more than threefold following a reduction in salinity from 50 to 10 S. Na–K-ATPase activity, expressed as percentage of total ATPase activity, amounted to 60–80% in gills, about 60% in hypodermis and 20–40% in the other organs. Ouabain, a specific inhibitor of Na–K-ATPase activity, reduced serum osmolalities in crabs kept at 9–10 S only when injected into the hemolymph (1 and 5 · 10-5 M), but had no effect when dissolved in ambient water (10-4 M). The results obtained underline that crustacean gills are the main organs for ionic regulation, and confirm the hypothesis of the central role of the Na–K-ATPase in active Na uptake as the basic mechanism of hyperregulation in dilute media. Reduction of serum osmolalities following injection of ouabain into the hemolymph confirms previous reports on localization of the sodium pump in the basolateral parts of epithelial cells.  相似文献   

18.
Light-dependent 14CO2 fixation by the algae of Diplosoma virens (Hartmeyer) ranged between about 3 and 27 moles mg-1 chlorophyll h-1. The principal first products of 14C fixation were 3-phosphoglyceric acid and phosphorylated sugars, indicating that ribulose bisphosphate carboxylase was the primary carboxylation enzyme. The activity of this enzyme in crude extracts of the algae was 4 to 6 moles CO2 mg-1 chlorophyll h-1. The principal end product of 14C fixation by these algae in the ascidian host was a water-soluble oligosaccharide which was an -1,4-glucan. A maximum of 7% of the 14C fixed was found in insoluble materials of the algae or its host after 60 min 14CO2 fixation. Whether the -1,4-glucan is a product of algal or animal metabolism remains to be determined.  相似文献   

19.
The resting rate of ammonia excretion for the sediment living bivalve Nucula tenuis (Montagu) was found to be 38.8 gN mg-1 dw h-1×10-4 in August and November 1985 in the Oslofjord. The excretion rate of experimental individuals was 37% higher when placed in artificial glass bead sediment. The regression between dry weight and excretion was logN excretion=1.338+1.192 log x, where excretion is gN individual-1 h-1×10-4 and log x=mg dry weight.  相似文献   

20.
The distribution of phytoplankton primary production into four size fractions (>10 m, 10-3 m, 3-0.2 m and <0.2 m), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 m) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 m filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 m. The primary production encountered in the 3-0.2 m fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 m filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号