首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A discrete spatial simulation model is developed to investigate the type and intensity of biological and physical factors influencing the structure of coral communities. The model represents reproduction, growth, and interspecific competition by coral colonies in terms of “ownership” of space in a plot of reef habitat. Using data for several eastern Pacific coral species, the model reproduces observed changes in species composition and diversity during coral community development. Model results suggest that during early successional stages, or in areas that are frequently disturbed, larval colonization and rapid growth are more important than dominance achieved by extracoelenteric digestion or by growing over another coral in acquiring and maintaining possession of reef substrate. In mature communities that remain undisturbed, dominance is the best competitive strategy. Although the model was developed to study natural and man-induced changes in the community dynamics of coral reefs, it could be adapted to study other sessile organisms where spatial pattern is an important influence on the frequency and outcome of biological interactions.  相似文献   

2.
Seagrass beds are often considered to be important nurseries for coral reef fish, yet the effectiveness of these nursery functions (refuge and food availability) at different juvenile stages is poorly understood. To understand how the demands of juvenile fish on seagrass nursery functions determines the timing of ontogenetic habitat shifts from seagrass beds to coral reefs, we conducted visual transect survey and field tethering and caging experiments on three different sizes of the coral reef fish Pacific yellowtail emperor (Lethrinus atkinsoni) during its juvenile tenure in seagrass beds at Ishigaki Island, southern Japan. The study showed that although the number of individual L. atkinsoni juveniles decreased by >90 % during their stay in the seagrass nursery, the shelter and/or food availability functions of the nursery, at least for a juvenile size of approximately 5 cm total length (TL), provided the best survival and growth option. The timing of ontogenetic migration to coral reefs of larger fish (>8 cm TL) was attributed to foraging efficiency for larger food items in different habitats. Overall, the function of the seagrass bed nursery changed with juvenile body size, with marginally higher survival and significantly greater growth rates during early juvenile stages in seagrass beds compared to coral reefs. This would contribute to the enhancement in the number of individuals eventually recruited to adult populations.  相似文献   

3.
Coral bleaching events are associated with abnormal increases in temperature, such as those produced during El Niño. Recently, a breakdown in the coral–dinoflagellate (genus Symbiodinium) endosymbiosis has been documented in corals exposed to anomalously cold-water temperatures associated with La Niña events. Given the ecological significance of such events, as well as the threat of global climate change, surprisingly little is known about the physiological response of corals to cold stress. This study evaluated some physiological effects of continuous temperature decline in colonies of the eastern Pacific reef-building coral Pocillopora verrucosa. Twenty days of incubation at 18.5–19.0 °C resulted in a substantial decrease in holobiont lipid and Chla content, as well as an increase in Symbiodinium density. These observations suggest a combination of symbiont acclimation due to the temperature decline and reallocation of carbon toward algal growth as opposed to translocation to the host coral. With a decreased availability of symbiont-derived carbon, the coral likely catabolized storage lipids in order to survive the stress event. Despite this stress and some tissue necrosis, no mortality was noted and corals recovered quickly when returned to the ambient temperature. As these results are in marked contrast to similar studies investigating elevated temperature on this coral from this same location, Pocillopora in the Mexican Central Pacific may be more prone to long-term damage and mortality during periods of ocean warming as opposed to ocean cooling.  相似文献   

4.
Development of contemporary Eastern Pacific coral reefs   总被引:4,自引:0,他引:4  
Dana  T. F. 《Marine Biology》1975,33(4):355-374
An overview of oceanographic conditions prevailing in the tropical Eastern Pacific Ocean suggests that the entire region is environmentally marginal for coral-reef development. The principal features of this environment are a strong, permanent, shallow thermocline and an annual north-south migration of the Intertropical Convergence resulting in wet and dry seasons. Along tropical Eastern Pacific continental margins structural coral reefs are best developed in the Gulf of Chiriquí off western Panamá. These reefs are relatively small, with reef formation taking place at a maximum depth of roughly 10 m. All of the reefs are judged to have formed since sea level approached its present height some 5,000 years ago. A study of the physical environment in the Gulf of Chiriquí revealed the following. Seasonal differences in surface temperatures were small but significant (P0.01), with the dry-season median (Md) of 28.9°C higher than the rainy season one of 28.0°C. At all times, surface-water temperatures were within the range considered optimal for coral growth. There were also significant (P<0.05) seasonal differences in the depths of the 25°, 20°, and 18°C isotherms. The first was shallowest (Md=18.5 m) during the rainy season due to vertical mixing, while the latter two were shallowest (Mds=31.5 and 33.0 m, respectively) during the dry season due to a generalized shoaling of the thermocline. All three isotherms are closely associated with the thermocline and showed remarkable variability in depth, most likely connected with internal waves. Salinities were reduced down to depths greater than 20 m and for distances of more than 50 km from the coast. Seasonal differences were slight (0.7% S) but statistically significant (P<0.01). Turbidity during the rainy season reduces the amount of light reaching the bottom at 10 m depth roughly by a factor of three compared to the dry season. Even the dry season amount is only about one half as much as would be expected to reach the same depth on the seaward reef of a Westen Pacific atoll. These conditions of cool water a short distance below the surface, reduced salinities, and high seasonal turbidity combine to make the region a poor one for coral-reef formation. The history of the Eastern Pacific coral fauna is traced from the Cretaceous to the Holocene. The present fauna is of Indo-Western Pacific origin, having become established following (1) the final closure of the connections between the Caribbean and Eastern Pacific (Pliocene), (2) movement of the northern Line Islands by sea-floor spreading into the path of the North Pacific Equatorial Countercurrent (Pliocene), and (3) the loss of all Eastern Pacific hermatypes during the Pleistocene.  相似文献   

5.
Our understanding of the reproductive biology of corals from the Mexican southeastern Pacific is limited, and consequently, the role of reproduction in structuring coral communities is unclear. As a first attempt to understand the importance of sexual reproduction in structuring and maintaining of the coral communities from this region, we documented the reproductive cycles over 2 years (2003–2004) in three main reef-building corals species in the region. Pocillopora damicornis was shown to be hermaphroditic with asynchronous gamete development observed only in 2004; P. gigantea was characterized as both gonochoric and cosexually hermaphroditic. Absence of mature gametes was documented in both species, and an observation may be attributed to the 2003 El Niño Southern Oscillation event, which may have inhibited reproductive maturation via thermal stress. Porites panamensis was gonochoric with asynchronous development, and planulae were generally brooded. The presence of mature gametes and planulae in P. panamensis polyps suggests that this species is an important contributor to local and, likely, regional recruitment of this species. Further research should seek to identify important source populations for these coral recruits and document the exchange of larvae between coral populations of the Mexican Pacific.  相似文献   

6.
Although the rapid recovery of fishes after establishment of a marine reserve is well known, much less is known about the response of long-lived, sessile, benthic organisms to establishment of such reserves. Since antiquity, Mediterranean red coral (Corallium rubrum) has been harvested intensively for use in jewelry, and its distribution is currently smaller than its historical size throughout the Mediterranean Sea. To assess whether establishment of marine reserves is associated with a change in the size and number of red coral colonies that historically were not harvested sustainably, we analyzed temporal changes in mean colony diameter and density from 1992 to 2005 within red coral populations at different study sites in the Medes Islands Marine Reserve (established in 1992) and in adjacent unprotected areas. Moreover, we compared colony size in the Medes Islands Marine Reserve, where recreational diving is allowed and poaching has been observed after reserve establishment, with colony size in three other marine protected areas (Banyuls, Carry-le-Rouet, and Scandola) with the enforced prohibition of fishing and diving. At the end of the study, the size of red coral colonies at all sampling sites in the Medes Islands was significantly smaller than predicted by growth models and smaller than those in marine protected areas without fishing and diving. The annual number of recreational dives and the percent change in the basal diameter of red coral colonies were negatively correlated, which suggests that abrasion by divers may increase the mortality rates of the largest red coral colonies within this reserve . Our study is the first quantitative assessment of a poaching event, which was detected during our monitoring in 2002, inside the marine reserve. Poaching was associated with a loss of approximately 60% of the biomass of red coral colonies.  相似文献   

7.
Cover Caption     
Cover : Niue Island in the South Pacific Ocean is one of the largest uplifted coral atolls on Earth. Two articles in this issue highlight potential strategies for conserving the species and fisheries associated with coral reefs. Aswani and Sabetian (pp. 520‐530) examine effects of urban migration on both fisheries and customary management systems, and Dalleau et al. (pp. 541‐552) explore spatial analyses that may inform designation of marine protected areas for islands in the Pacific Ocean.  相似文献   

8.
For over 20 years the El Niño-Southern Oscillation (ENSO) has caused damage to the coral reefs of the eastern Pacific and other regions. In the mid-1980s scientists estimated that coral cover was reduced by 50–100% in several countries across the region. Almost 20 years (2002) after the 1982–1983 event, we assessed the recovery of the virtually destroyed reefs at Cocos Island (Costa Rica), previously evaluated in 1987 and reported to have less than 4% live coral cover. We observed up to fivefold increase in live coral cover which varied among reefs surveyed in 1987 and 2002. Most new recruits and adults belonged to the main reef building species from pre-1982 ENSO, Porites lobata, suggesting that a disturbance as outstanding as El Niño was not sufficient to change the role or composition of the dominant species, contrary to phase shifts reported for the Caribbean. During the 1990s, new species were observed growing on the reefs. Notably, Leptoseris scabra, considered to be rare in the entire Pacific, was commonly found in the area. Recovery may have begun with the sexual and asexual recruits of the few surviving colonies of P. lobata and Pavona spp. and with long distance transport of larvae from remote reefs. We found an overall 23% live coral cover by 2002 and with one reef above 58% indicating that Cocos Island coral reefs are recovering.  相似文献   

9.
Idjadi JA  Karlson RH 《Ecology》2007,88(10):2449-2454
Spatial aggregation among strong competitors has been identified as a putative mechanism promoting the coexistence of weak competitors in intensely competitive communities. With notable exceptions in plant communities, few investigators have tested this hypothesis experimentally. In this study, we manipulated the spatial arrangement of corals to test whether within-patch aggregation of a strong coral competitor enhances the success of a weaker coral competitor. Corals grown in simple aggregated arrangements, where the number and type of competitors were held constant, grew almost twice as much as those in non-aggregated arrangements. These growth results suggest that species coexistence is promoted by aggregation within competitive neighborhoods. Thus spatial aggregation may be one of several important mechanisms contributing to the persistence of weak competitors and species coexistence on coral reefs.  相似文献   

10.
Partial sequences of the mitochondrial DNA (mtDNA) gene cytochrome oxidase subunit 1 (COI) were analysed from individuals of the coralline demosponge Astrosclera willeyana sensu lato out of ten Indo-Pacific populations from the Red Sea to the central Pacific. This taxon is widely distributed in cryptic coral reef habitats of the Indo-Pacific and is regarded as a modern representative of long-extinct, formerly reef-building stromatoporoid-type sponges. The aims were to clarify phylogeographic and taxonomic relationships in this “living fossil” and to explore mitochondrial DNA sequence variation over a wide geographic range. Very low variability was observed across the Indo-Pacific, as only three COI haplotypes were identified, with a maximum p-distance of 0.418% and low nucleotide diversity (π=0.00049). Very low genetic structure was revealed among populations: Haplotype 1 was found in all specimens from nine Pacific populations (N=45), separated by distances of more than 7,000 km; haplotype 2 was restricted to the Red Sea population (N=4); haplotype 3 was only found in the Tuamoto specimens (N=7). COI data presented here do not support the hypothesis of at least two sibling species belonging to genus Astrosclera in the Pacific. Considering the maximum geographic distance of more than 20,000 km between sampled populations, mtDNA COI sequence variation observed here is among the lowest reported to date for a diploblastic taxon and adds to the growing evidence of a general mtDNA conservation in sponges. It is argued that this low mtDNA variation in A. willeyana s.l. is due to a low rate of mtDNA evolution caused by a combination of long generation time and low metabolic rate.  相似文献   

11.
Dispersal in coral reef fishes occurs predominantly during the larval planktonic stage of their life cycle. With relatively brief larval stages, damselfishes (Pomacentridae) are likely to exhibit limited dispersal. This study evaluates gene flow at three spatial scales in one species of coral reef damselfish, Dascyllus trimaculatus. Samples were collected at seven locations at Moorea, Society Islands, French Polynesia. Phylogenetic relationships and gene flow based on mitochondrial control region DNA sequences between these locations were evaluated (first spatial scale). Although spatial structure was not found, molecular markers showed clear temporal structure, which may be because pulses of settling larvae have distinct genetic composition. Moorea samples were then compared with individuals from a distant island (750 km), Rangiroa, Tuamotu Archipelago, French Polynesia (second spatial scale). Post-recruitment events (selection) and gene flow were probably responsible for the lack of structure observed between populations from Moorea and Rangiroa. Finally, samples from six Indo-West Pacific locations, Zanzibar, Indonesia, Japan, Christmas Island, Hawaii, and French Polynesia were compared (third spatial scale). Strong population structure was observed between Indo-West Pacific populations. Received: 26 May 2000 / Accepted: 10 October 2000  相似文献   

12.
Large animals are severely depleted in many ecosystems, yet we are only beginning to understand the ecological implications of their loss. To empirically measure the short-term effects of removing large animals from an ocean ecosystem, we used exclosures to remove large fish from a near-pristine coral reef at Palmyra Atoll, Central Pacific Ocean. We identified a range of effects that followed from the removal of these large fish. These effects were revealed within weeks of their removal. Removing large fish (1) altered the behavior of prey fish; (2) reduced rates of herbivory on certain species of reef algae; (3) had both direct positive (reduced mortality of coral recruits) and indirect negative (through reduced grazing pressure on competitive algae) impacts on recruiting corals; and (4) tended to decrease abundances of small mobile benthic invertebrates. Results of this kind help advance our understanding of the ecological importance of large animals in ecosystems.  相似文献   

13.
Ian C. Enochs 《Marine Biology》2012,159(4):709-722
Coral reef cryptofauna are a diverse group of metazoan taxa that live within intra- and inter-skeletal voids formed by framework structures. Despite a hypothesized high biomass and numerous trophic roles, they remain uncharacterized relative to exposed reef communities. Motile cryptofauna were sampled from live coral colonies and dead frameworks typifying four successive levels of degradation on an eastern Pacific pocilloporid reef. Abundances and biomass were higher on live versus dead corals habitats. The density of cryptofauna per volume substrate was highest on dead coral frameworks of intermediate degradation, where complex eroded substrates provide abundant shelters. These data have important and far-reaching ramifications for how the diverse multispecies assemblages that are reef ecosystems will respond to anthropogenic stressors such as those associated with climate change. Extreme levels of coral mortality, bioerosion, and habitat destruction will lead to impairment and eventually loss of ecosystem functions.  相似文献   

14.
Cover Caption     
Cover: Examples of color variation in five broadly distributed coral reef fishes. Historically these variants were considered the same species; however, genetic analyses reveal the populations from Fiji are a unique evolutionary lineage. Their uniqueness suggests that diversity of fishes in the Pacific has been underestimated and that biodiversity may be highly regionalized (photos by Gerry Allen). See pages 965–975.  相似文献   

15.
The Keratoisidinae are a poorly known, but phenotypically diverse group of deepwater corals. Recent developments in deepwater trawling in the southwest Pacific have provided many more specimens of bamboo corals. Two sub-regions of the mitochondrial genome were sequenced to test genetic relationships among specimens collected over a wide geographical range (27–50° S): a sub-region of the large-subunit rRNA (16S rRNA), characterized by a highly variable insertion/deletion (INDEL#2) region; and a non-coding region between COII and COI. Based on DNA haplotypes, 14 species of Keratoisidinae were recognized among 88 specimens from deep water in the southwest Pacific Ocean. The common haplotypes also appeared in specimens collected in the northwest Pacific Ocean and may indicate that some bamboo coral species are widespread in the Pacific, or that the mitochondrial markers are insensitive to recent speciation events. Many specimens were taken from flat bottom areas and, contrary to assumptions, the bamboo corals are not endemic to seamounts. The closure of some seamounts to trawling will protect bamboo corals from extinction, but not from local depletion.Communicated by M.S. Johnson, Crawley  相似文献   

16.
Individuals of the pit crabs Cryptochirus coralliodytes Heller inhabit massive corals of the family Faviidae. Their pit walls were observed to be covered by blue-green algae and fungi. We suggest that the crabs enhance the growth of these algae and fungi with their metabolic excretions, which contain ammonium. The endolithic algae and the fungi may facilitate the abrasion of the coral skeleton by the crabs, by perforating it and thus weakening the skeletal structure. Computerized tomography analysis revealed dense skeletal material around the pits. Transverse sections showed that the calcification around the pit was similar to other parts of the colony, whereas the macro-architecture was different. Such a difference is the result of the crabs' influence on the corals' living tissue, possibly on the calicoblast which deposits the coenosteum. Crabs, which were exposed to carbon-labeled corals for 1, 7 and 18 d, accumulated labeled carbon, indicating transfer of carbon from the coral tissue to the crabs. Histochemical examination of the stomach and gut of crabs revealed the presence of mucopolysaccharids in the gut, supporting the hypothesis that the crabs eat coral products. The findings of this study provide additional evidence that C. coralliodytes are parasites and support the general hypothesis that a nutritional relationship may have served as a basis for selection. Received: 20 October 1998 / Accepted: 29 April 1999  相似文献   

17.
Light-saturation curves for photosynthesis by reef-building corals have previously been simulated by three functions: the right rectangular hyperbola, a simple exponential function, and the hyperbolic tangent function. Studies of photosynthesis by other organisms have also frequently considered the application of a rectilinear function. This communication analyzes lightsaturation curves for photosynthesis by the Atlantic rose coral Manicina aerolata, the Atlantic staghorn coral Acropora cervicornis, and the Pacific staghorn coral A. formosa. It also analyzes light-saturation curves for calcification by A. cervicornis and A. formosa. This communication demonstrates that the two most accurate functions (as measured by coefficients of determination) are the simple exponential function and the hyperbolic tangent function. The hyperbolic tangent function is preferred because parameter estimates obtained with this function have narrower confidence intervals than those obtained through the application of the simple exponential function. The hyperbolic tangent function can also be used successfully to simulate light-saturation curves for light-enhanced calcification.  相似文献   

18.
Symbioses between dinoflagellates in the genus Symbiodinium (commonly referred to as zooxanthellae) and scleractinian corals are an essential feature for the maintenance of coral reefs. The fine-scale diversity and population structure of the zooxanthellae inhabiting the coral Pocillopora meandrina, a major reef building species in Polynesia, was examined. We used two polymorphic microsatellites to study seven populations from the South Pacific, whose host structuring has been previously investigated. The symbionts of P. meandrina showed high levels of diversity, with more than one zooxanthella genotype being identified in most of the host individuals. Genetic differentiation between symbiont populations was detected at a large scale (2,000 km) between the Tonga and the Society Archipelagos. Within the Society Archipelago, the two most remote populations (Tahiti and Bora-Bora; 200 km apart) were only weakly differentiated from each other. Statistical tests demonstrated that the symbiont genetic structure was not correlated with that of its host, suggesting that dispersal of the symbionts, whether they are transported within a host larva or free in the water, depends mainly on distance and water currents. In addition, the data suggests that hosts may acquire new symbionts after maternal transmission, possibly following a disturbance event. Lastly, the weak differentiation between symbiont populations of P. verrucosa and P. meandrina, both from Moorea, indicated that there was some host-symbiont fine-scale specificity detectable at the genetic resolution offered by microsatellites.  相似文献   

19.
Fong P  Smith TB  Wartian MJ 《Ecology》2006,87(5):1162-1168
Macroalgal dominance of some tropical reef communities in the Eastern Pacific after coral mortality during the 1997-1998 El Ni?o Southern Oscillation (ENSO) was facilitated by protection from herbivory by epiphytic cyanobacteria. Our results do not support that reduction in number of herbivores was a necessary precursor to coral reef decline and shifts to algal reefs in this system. Rather, macroalgae dominated the community for several years after this pulse disturbance with no concurrent change in herbivore populations. While results of microcosm experiments identified the importance of nutrients, especially phosphorus, in stimulating macroalgal growth, nutrient supply alone could not sustain macroalgal dominance as nutrient-stimulated growth rates in our in situ experiments never exceeded consumption rates of unprotected thalli. In addition, thalli with nutrient-enriched tissue were preferentially consumed, possibly negating the positive effects of nutrients on growth. These tropical reefs may be ideal systems to conduct experimental tests distinguishing phase shifts from alternative stable states. Shifts were initiated by a large-scale disturbance with no evidence of a changing environment except, perhaps, dilution in herbivory pressure due to increased algal cover. Community establishment was most likely stochastic, and the community was likely maintained by strongly positive interaction between macroalgal hosts and cyanobacterial epiphytes that uncoupled consumer control of community structure.  相似文献   

20.
We tested the rarely considered hypothesis that the ultraviolet portion (UVR, 280–400 nm) of the light spectrum affects patterns of recruitment in reef-building corals. The premise for this hypothesis rests in the fact that biologically relevant intensities of UVR penetrate to considerable depths (>24 m) in the clear waters surrounding many coral reefs, and that reef organisms allocate substantial resources to prevent and repair UVR damage. The ability of larvae spawned by the brown morph of the Caribbean coral, Porites astreoides, to detect and avoid UVR was assessed in petri dishes where one-half of the dish was shielded from UVR and the other exposed. Observations made every 30 min between 10:30 and 13:30 h showed significantly higher densities of larvae swimming in regions shielded from UVR. To determine how this behavior affects settlement patterns, larvae collected from P. astreoides adults at 18 m depth were released into chambers deployed at 17 m depth where they were given a choice of three different light regions in which to settle: PAR (PAR=400–700 nm), PAR+UVAR (UVAR=320–400 nm), and PAR+UVAR+UVBR (UVBR=280–320 nm). At the end of the experiment, greater numbers of P. astreoides larvae had settled in the region of the tube where UVR was reduced than would be expected if dispersion were random. To our knowledge, this is the first demonstration in any reef-building coral species that planula larvae can detect UVR and that it affects their choice of a settlement site. These results indicate that the capacity to detect and avoid habitats with biologically damaging levels of UVR may be one factor contributing to the successful recruitment of coral larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号