首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
 Short-term effects of temperature and irradiance on oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat were investigated with O2 microsensors in a laboratory. The effect of temperature on O2 fluxes across the mat–water interface was studied in the dark and at a saturating high surface irradiance (2162 μmol photons m−2 s−1) in the temperature range from 15 to 45 °C. Areal rates of dark O2 consumption increased almost linearly with temperature. The apparent activation energy of 18 kJ mol−1 and the corresponding Q 10 value (25 to 35 °C) of 1.3 indicated a relative low temperature dependence of dark O2 consumption due to mass transfer limitations imposed by the diffusive boundary layer at all temperatures. Areal rates of net photosynthesis increased with temperature up to 40 °C and exhibited a Q 10 value (20 to 30 °C) of 2.8. Both O2 dynamics and rates of gross photosynthesis at the mat surface increased with temperature up to 40 °C, with the most pronounced increase of gross photosynthesis at the mat surface between 25 and 35 °C (Q 10 of 3.1). In another mat sample, measurements at increasing surface irradiances (0 to 2319 μmol photons m−2 s−1) were performed at 25, 33 (the in situ temperature) and 40 °C. At all temperatures, areal rates of gross photosynthesis saturated with no significant reduction due to photoinhibition at high irradiances. The initial slope and the onset of saturation (E k = 148 to 185 μmol photons m−2 s−1) estimated from P versus E d curves showed no clear trend with temperature, while maximal photosynthesis increased with temperature. Gross photosynthesis was stimulated by temperature at each irradiance except at the lowest irradiance of 54 μmol photons m−2 s−1, where oxygenic gross photosynthesis and also the thickness of the photic zone was significantly reduced at 40 °C. The compensation irradiance increased with temperature, from 32 μmol photons m−2 s−1 at 25 °C to 77 μmol photons m−2 s−1 at 40 °C, due to increased rates of O2 consumption relative to gross photosynthesis. Areal rates of O2 consumption in the illuminated mat were higher than dark O2 consumption at corresponding temperatures, due to an increasing O2 consumption in the photic zone with increasing irradiance. Both light and temperature enhanced the internal O2 cycling within hypersaline cyanobacterial mats. Received: 30 November 1999 / Accepted: 11 April 2000  相似文献   

2.
B. R. Oates 《Marine Biology》1985,89(2):109-119
Rates of gross photosynthesis for the intertidal saccate alga Colpomenia peregrina (Sauv.) Hamel were determined under submersed and emersed conditions. Maximal photosynthetic rates were lower than for most seaweeds but comparable with other saccate members of the genus. By fitting the data to a hyperbolic tangent function, maximal photosynthetic rates were estimated to be 5.29 mmol CO2 m-2 h-1 under submersed conditions and 2.06 mmol CO2 m-2 h-1 under emersed conditions. Ik for submersed thalli was 69.1 E m-2 s-1, wherea for emersed thalli it was 149.0 E m-2 s-1, or 2.2 times higher. At low tide in the field and under saturating irradiance, carbon from seawater retained within the thallus cavity was assimilated at 0.9 mmol CO2 m-2 h-1. In the laboratory under emersed conditions, carbon from this source was taken up at 0.6 mmol CO2 m-2 h-1 at 20°C and at 0.34 mmol CO2 m-2 h-1. Retained seawater also greatly reduced drying under desiccating conditions. Experimental thalli from which seawater had been removed lost thallus water continuously throughout the drying period (120 min). On the other hand, control, thalli lost water for the first 15 min, after which no further water loss occurred. At the termination of the experiment, control thalli had lost 7.2% of their water, whereas experimental thalli had lost 39.2%. Desiccation affected the emersed photosynthetic rate of experimental and control thalli. Emersed photosynthetic rates for thalli dried for 15 min were higher than for fullyhydrated thalli. However, emersed photosynthesis of thalli dried for longer than 15 min was lower than fully-hydrated rates and was directly related to percent water loss. Utilizing data from this study, a model was constructed to determine total photosynthetic production of C. peregrina over a single daylight period. From these calculations it was determined that emersed photosynthesis can increase daily photosynthetic production of C. peregrina by 50%.  相似文献   

3.
The photosynthetic responses of the south Pacific kelp Lessonia nigrescens of the coast of Valdivia, Chile (40°S), were investigated by exposing its different thallus parts, fronds, stipes and holdfasts, to UV radiation in the laboratory. Biologically effective doses (BEDphotoinhibition300) between 400 and 800 kJ m−2 were required for a 40% inhibition in photosynthesis under UVA+UVB radiation. At BEDphotoinhibition300 close to 250 kJ m−2 (in treatments without UVB), the inhibition of photosynthesis did not exceed 20%. These UV doses were in the range of current daily doses measured in Valdivia on cloudless summer days. In general, exposure to UVB for periods longer than 12 h reduced photosynthesis, measured as maximal quantum yield (F v/F m) and electron transport. The fronds were the most UV-sensitive section of this alga, coinciding with the highest pigments contents and carbon fixation. Evidence of a photodamage was also seen. After a 48 h exposure to PAR+UVA+UVB, a decrease of F v/F m in the fronds was close to 41%, while in the stipes and holdfasts it was 12 and 18%, respectively. Although the thalli from the different size classes showed marked differences in their morphology and morphometry, no obvious differences in the UV tolerance of the fronds were detected. The results indicated that the UV-related responses are integrated in the suite of morpho-functional adaptations of the alga. Although the fronds are spatially more exposed to solar radiation than basal structures (stipes and holdfast), due their high turnover rate they may compensate better detrimental effects of UV. In contrast, stipes and the holdfast are key support structures characterized by low replacement rates and designed to confer hydrodynamic resistance to drag forces.  相似文献   

4.
In this study, we tested the hypothesis that the importance of water flow for skeletal growth (rate) becomes higher with increasing irradiance levels (i.e. a synergistic effect) and that such effect is mediated by a water flow modulated effect on net photosynthesis. Four series of nine nubbins of G. fascicularis were grown at either high (600 μE m−2 s−1) or intermediate (300 μE m−2 s−1) irradiance in combination with either high (15–25 cm s−1) or low (5–10 cm s−1) flow. Growth was measured as buoyant weight and surface area. Photosynthetic rates were measured at each coral’s specific experimental irradiance and flow speed. Additionally, the instantaneous effect of water flow on net photosynthetic rate was determined in short-term incubations in a respirometric flowcell. A significant interaction was found between irradiance and water flow for the increase in buoyant weight, the increase in surface area, and specific skeletal growth rate, indicating that flow velocity becomes more important for coral growth with increasing irradiance levels. Enhancement of coral growth with increasing water flow can be explained by increased net photosynthetic rates. Additionally, the need for costly photo-protective mechanisms at low flow regimes could explain the differences in growth with flow.  相似文献   

5.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

6.
Net photosynthesis at 10mol photons m-2 s-1 in each of 24 wavelengths was measured in absolute units by an O2-electrode and corrected for dark respiration to construct action spectra for gross photosynthesis in nine species of algae, which included plants with thin and thick thalli from each of four major pigment groups. The photosynthesis of green and brown algae with thin thalli decreased in green light, but species with thick thalli from these two groups had action spectra which were almost flat, and matched the optical blackness of the thalli but did not reflect the pigment differences between the species. Among the red algae, on the other hand, there was little difference between the action spectra for thin and thick algae. Only wavelengths absorbed by the phycobilin pigments were effective in photosynthesis, even in species (e.g. Chondrus, Phyllophora) which absorbed all visible wavelengths strongly. Maximal quantum yields of 0.10 to 0.12 O2 molecules per absorbed photon were recorded for thin green and brown algae, but thicker algae in these two groups had lower values. Red algae exhibited maximal values close to 0.10 O2 molecules per absorbed photon, irrespective of thallus thickness or phycocyanin content, but the quantum yields of phycoerythrin-rich species in the 600 to 650 nm waveband were lower than those of phycocyanin-rich species.  相似文献   

7.
 The physico-chemical microenvironment of larger benthic foraminifera was studied with microsensors for O2, CO2, pH, Ca2+ and scalar irradiance. Under saturating light conditions, the photosynthetic activity of the endosymbiotic algae increased the O2 up to 183% air saturation and a pH of up to 8.6 was measured at the foraminiferal shell surface. The photosynthetic CO2 fixation decreased the CO2 at the shell down to 4.7 μM. In the dark, the respiration of host and symbionts decreased the O2 level to 91% air saturation and the CO2 concentration reached up to 12 μM. pH was lowered relative to the ambient seawater pH of 8.2. The endosymbionts responded immediately to changing light conditions, resulting in dynamic changes of O2, CO2 and pH at the foraminiferal shell surface during experimentally imposed light–dark cycles. The dynamic concentration changes demonstrated for the first time a fast exchange of metabolic gases through the perforate, hyaline shell of Amphistegina lobifera. A diffusive boundary layer (DBL) limited the solute exchange between the foraminifera and the surrounding water. The DBL reached a thickness of 400–700 μm in stagnant water and was reduced to 100–300 μm under flow conditions. Gross photosynthesis rates were significantly higher under flow conditions (4.7 nmol O2 cm−3 s−1) than in stagnant water (1.6 nmol O2 cm −3 s−1), whereas net photosynthesis rates were unaffected by flow conditions. The Ca2+ microprofiles demonstrated a spatial variation in sites of calcium uptake over the foraminiferal shells. Ca2+ gradients at the shell surface showed total Ca2+ uptake rates of 0.6 to 4.2 nmol cm−2 h−1 in A. lobifera and 1.7 to 3.6 nmol cm−2 h−1 in Marginopora vertebralis. The scattering and reflection of the foraminiferal calcite shell increased the scalar irradiance at the surface up to 205% of the incident irradiance. Transmittance measurements across the calcite shell suggest that the symbionts are shielded from higher light levels, receiving approximately 30% of the incident light for photosynthesis. Received: 6 July 1999 / Accepted: 28 April 2000  相似文献   

8.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

9.
In this study, juvenile colonies of massive Porites spp. (a combination of P. lutea and P. lobata) from the lagoon of Moorea (W 149°50′, S 17°30′) were damaged and exposed to contrasting conditions of temperature and flow to evaluate how damage and abiotic conditions interact to affect growth, physiological performance, and recovery. The experiment was conducted in April and May 2008 and consisted of two treatments in which corals were either undamaged (controls) or damaged through gouging of tissue and skeleton in a discrete spot mimicking the effects of corallivorous fishes that utilize an excavating feeding mode. The two groups of corals were incubated for 10 days in microcosms that crossed levels of temperature (26.7 and 29.6°C) and flow (6 and 21 cm s−1), and the response assessed as overall colony growth (change in weight), dark-adapted quantum yield of PSII (F v/F m), and healing of the gouged areas. The influence of damage on growth was affected by temperature, but not by flow. When averaged across flow treatments, damage promoted growth by 25% at 26.7°C, but caused a 25% inhibition at 29.6°C. The damage also affected F v/F m in a pattern that differed between flow speeds, with a 10% reduction at 6 cm s−1, but a 4% increase at 21 cm s−1. Regardless of damage, F v/F m at 21 cm s−1 was 11% lower at 26.7°C than at 29.6°C, but was unaffected by temperature at 6 cm s−1. The lesions declined in area at similar rates (4–5% day−1) under all conditions, although the tissue within them regained a normal appearance most rapidly at 26.7°C and 6 cm s−1. These findings show that the response of poritid corals to sub-lethal damage is dependent partly on abiotic conditions, and they are consistent with the hypothesis that following damage, calcification and photosynthesis can compete for metabolites necessary for repair, with the outcome affected by flow-mediated mass transfer. These results may shed light upon the ways in which poritid corals respond to biting by certain corallivorous fishes.  相似文献   

10.
The sea cucumber, Cucumaria frondosa, is a benthic suspension feeder that captures food particles on its tentacles and then inserts them into its mouth one at a time. Previous studies have suggested that tentacle insertion rate (TIR) could be a useful indicator of food intake. The present study determined whether flow velocity affects TIR and whether TIR is a good indicator of ingestion. Video observations of sea cucumbers in Passamaquoddy Bay (45°01.70N, 66°55.74W) in August 1995 showed that TIRs increased with velocities up to 55 cm s−1 and decreased steadily at flows above that up to 130 cm s−1. In October 2006, laboratory flume studies were carried out on specimens collected from the same site in the previous August. Temperature and salinity (12°C and 32) in the flume were the same as in the field at the time of collection. There was high individual variation in feeding behavior at free-stream velocities of 4–40 cm s−1 and TIR was independent of flow. As the number of tentacle insertions increased in the flume experiments, the amount of chloropigments in the digestive tracts of the sea cucumbers also increased. This suggests that TIR, which can be measured non-intrusively using remote video techniques, could be a good indicator of feeding behavior and ingestion in C. frondosa.  相似文献   

11.
In situ measurements of seagrass photosynthesis in relation to inorganic carbon (Ci) availability, increased pH and an inhibitor of extracellular carbonic anhydrase were made using an underwater pulse amplitude modulated (PAM) fluorometer. By combining the instrument with a specially designed Perspex chamber, we were able to alter the water surrounding a leaf without removing it from the growing plant. Responses to Ci within the chamber showed that subtidal plants of the seagrasses Cymodocea serrulata and Halophila ovalis had photosynthetic rates that were limited by the ambient Ci concentration depending on the irradiance that was available during short-term photosynthesis–irradiance trials. Relative electron transport rates (RETRs) at light saturation (up to 500 μ mol photons m−2 s−1) increased by 66–100% when the Ci concentration was increased from ca. 2.2 to 6.2 mM. On the other hand, intertidal plants of the same species exhibited a much lesser limitation of photosynthesis by Ci at any irradiance (up to 1500 μ mol photons m−2 s−1). Both species were able to use HCO 3 efficiently, and there was stronger evidence for direct uptake of HCO 3 rather than extracellular dehydration of HCO 3 to CO2 prior to Ci uptake. Subtidally, H. ovalis and C. serrulata grew to 10 and 12 m, respectively, where ambient irradiances were approximately 16 and 11% of those at the surface. Maximum RETRs (at light saturation) were lower for these deep-growing plants than for the intertidally growing ones. For both species, the onset of light saturation of photosynthesis (E k) occurred at approximately 100 μ mol photons m−2 s−1 for the deep water populations, which was four and two times lower than for the shallow populations of C. serrulata and H. ovalis, respectively. This, and the differences in maximal photosynthetic rates (RETR max), reflects an acclimation of the deep-growing populations to the lower light environment. The results presented here show that photosynthesis, as measured in situ, was limited by the availability of Ci for the deeper growing plants in Zanzibar, while the intertidally growing plants photosynthesised at close to Ci saturation. The latter result is contrary to previous conclusions regarding Ci limitations for these intertidal plants, and, in general, our findings highlight the need for performing similar experiments in situ rather than under laboratory conditions. Received: 4 April 2000 / Accepted: 31 August 2000  相似文献   

12.
The shortfin mako shark, Isurus oxyrinchus, is a highly streamlined epipelagic predator that has several anatomical and physiological specializations hypothesized to increase aerobic swimming performance. A large swim-tunnel respirometer was used to measure oxygen consumption (MO2) in juvenile mako sharks (swimming under controlled temperature and flow conditions) to test the hypothesis that the mako shark has an elevated maintenance metabolism when compared to other sharks of similar size swimming at the same water temperature. Specimen collections were conducted off the coast of southern California, USA (32.94°N and 117.37°W) in 2001-2002 at sea-surface temperatures of 16.0–21.0°C. Swimming MO2 and tail beat frequency (TBF) were measured for nine mako sharks [77–107 cm in total length (TL) and 4.4 to 9.5 kg body mass] at speeds from 28 to 54 cm s−1 (0.27–0.65 TL s−1) and water temperatures of 16.5–19.5°C. Standard metabolic rate (SMR) was estimated from the extrapolation to 0-velocity of the linear regression through the LogMO2 and swimming speed data. The estimated LogSMR (±SE) for the pooled data was 2.0937 ± 0.058 or 124 mg O2 kg−1 h−1. The routine metabolic rate (RMR) calculated from seventeen MO2 measurements from all specimens, at all test speeds was (mean ± SE) 344 ± 22 mg O2 kg−1h−1 at 0.44 ± 0.03 TL s−1. The maximum metabolic rate (MMR) measured for any one shark in this study was 541 mg O2 kg−1h−1 at 54 cm s−1 (0.65 TL s−1). The mean (±SE) TBF for 39 observations of steady swimming at all test speeds was 1.00 ± 0.01 Hz, which agrees with field observations of 1.03 ± 0.03 Hz in four undisturbed free-swimming mako sharks observed during the same time period. These findings suggest that the estimate of SMR for juvenile makos is comparable to that recorded for other similar-sized, ram-ventilating shark species (when corrected for differences in experimental temperature). However, the mako RMR and MMR are apparently among the highest measured for any shark species.  相似文献   

13.
The diatom Cylindrotheca closterium was exposed to transient light- and osmotic conditions as occur during its tidal emersion. The objective was to analyze how this simulated emersion contributes to the production of active oxygen species (AOS) and via this, to oxidative cell damage. Light- and salinity conditions were varied in factorial combination: low light (no UVB) or high light (unweighted UVB-dose rates of respectively 0.01; 0.07; 0.24; 1.03 W m−2) at normal (30 psu) or high salinity (60 psu). UVB (0.01–0.24 W m−2) and high salinity had a significant, negative effect on the photosynthetic efficiencies ΔF/F m’ (steady-state quantum yield) and F v/F m (maximum yield). UVB at 1.03 W m−2 (15 kJ m−2 d−1) almost arrested electron transport. At ecologically relevant UVB levels, i.e. below 0.24 W m−2 (≈3.4 kJ m−2 d−1) with UVB:PAR<0.4:100 (PAR photosynthetically active radiation) only dynamic photoinhibition was observed (protection via heat dissipation). Non-photochemical quenching was positively correlated with the de-epoxidation of diadinoxanthin (DD) to diatoxanthin (DT). A decreasing ratio DT/(DD+DT) after 4 h of UVB at >0.07 W m−2 and at 60 psu indicated a reversal of the diatom xanthophyll cycle (diminished photoprotection) which may be caused by an enhanced AOS production. Oxidative stress and -damage to C. closterium cells were assessed applying fluorescent indicator dyes, via confocal microscopy and quantitative image analysis. AOS production rates (cellular DCF fluorescence) were stimulated by UV, and were ~50% higher at 60 psu. AOS production decreased with an increasing pre-exposure (0–4 h) to normal UVB (0.24 W m−2), which indicated a stimulation of the antioxidative defence. Non-protein thiols (indicator CMF) and glutathione pools (HPLC-analyzed) decreased with UVB-dose rates (0.01–0.24 W m−2), most likely due to AOS-mediated thiol oxidation. Hypersalinity (60 psu) and UVB (0.01–0.24 W m−2) caused membrane depolarization (dye DIBAC4(3)) and phospholipid hydrolysis (phospholipase A2 dye: bis-BODIPY FL-C11-PC). AOS production may have diminished the membrane polarity, and peroxidized the membrane lipids (HPLC-analyzed malondialdehyde) which enhanced PLA2 activity. The dyes indicated an increased oxidative (lipid) damage at a 15% inhibition of photosynthesis in this diatom, at UVB levels and salinities that can be expected in situ during its periodic tidal emersion.  相似文献   

14.
The role of multi-species benthic diatom films (BDF) in the settlement of late pediveliger larvae of the bivalve Macoma balthica was investigated in still-water bioassays and multiple choice flume experiments. Axenic diatom cultures that were isolated from a tidal mudflat inhabited by M. balthica were selected to develop BDF sediment treatments characterized by a different community structure, biomass, and amount of extracellular polymeric substances (EPS). Control sediments had no added diatoms. Although all larvae settled and initiated burrowing within the first minute after their addition in still water, regardless of treatment, only 48–52% had completely penetrated the high diatom biomass treatments after 5 min, while on average 80 and 69% of the larvae had settled and burrowed into the control sediments and BDF with a low diatom biomass (<3.5 μg Chl a g−1 dry sediment), respectively. The percentage of larvae settling and burrowing into the sediment was negatively correlated with the concentration of Chl a and EPS of the BDF. This suggests higher physical resistance to bivalve penetration by the BDF with higher diatom biomass and more associated sugar and protein compounds. The larval settlement rate in annular flume experiments at flow velocities of 5 and 15 cm s−1 was distinctly lower compared to the still-water assays. Only 4.6–5.8% of the larvae were recovered from BDF and control sediments after 3 h. Nonetheless, a clear settlement preference was observed for BDF in the flume experiments; i.e., larvae settled significantly more in BDF compared to control sediments irrespective of flow speed. Comparison with the settlement of polystyrene mimics and freeze-killed larvae led to the conclusion that active selection, active secondary dispersal and, at low flow velocities (5 cm s−1), passive adhesion to the sediment are important mechanisms determining the settlement of M. balthica larvae in estuarine biofilms.  相似文献   

15.
The photosynthetic adaptive features of non-dormant seeds in Posidonia oceanica were studied in order to evaluate the effects of light on germination success. Transmission electron micrographs showed the presence of chloroplasts in the epidermal cells, close to the nucleus at the periphery of the cytoplasm. The well-developed thylakoid membranes and the presence of starch granules indicated that the chloroplasts were photosynthetically active. The relationship between photosynthesis versus irradiance in P. oceanica seeds incubated at 15 and 21°C was analysed. The net photosynthesis in the non-dormant seed of P. oceanica was positive and compensated its respiration demand (90 μmol quanta m−2 s−1) at both temperatures. Net photosynthesis was negative at the other irradiance values. To test the effects of light on germination success, seeds were placed both in dark and light conditions. Germination success was significantly higher in light rather than in dark condition. The characteristics observed in the photosynthesis in P. oceanica seed could be a mechanism to guarantee seedling survival in temperate waters, demonstrating though the specialized nature of this species.  相似文献   

16.
 A survey of the distribution and maximum depth of a continuous Fucus vesiculosus belt was carried out in the Gulf of Finland in 1991. F. vesiculosus is widely distributed throughout the Gulf of Finland, including the vicinity of Vyborg Bay, Russia in the east. The maximum growth depth of F. vesiculosus in the Gulf of Finland reflects two different patterns according to the exposure to wave action. The most robust and continuous F. vesiculosus belt is observed on exposed shores, where the maximum growth depth is 5 to 6 m, with the optimum at 2 to 3 m. On moderately exposed shores the maximum growth depth is 3 m, with an optimum growth depth of <2 m. The maximum growth depth also varies geographically, with a decreasing trend towards the east. Maximum growth depth of F. vesiculosus correlates with light intensity. The compensation point for F. vesiculosus photosynthesis is about 25 μmol m−2 s−1, and photosynthesis is saturated at a light intensity of 300 μmol m−2 s−1. Vertical irradiance attenuation measurements in situ in summer revealed that for F. vesiculosus photosynthesis the quantity of light is optimal (200 to 300 μmol m−2 s−1) at <3 m depth. At depths >5 m the quantity of light is near or below the photosynthesis compensation point and insufficient for growth. These depth limits of light penetration coincide with measured growth depths of F. vesiculosus in the Gulf of Finland. Received: 7 May 1999 / Accepted: 18 November 1999  相似文献   

17.
Marja Koski 《Marine Biology》2007,151(5):1785-1798
Feeding, egg production, hatching success and early naupliar development of Calanus finmarchicus were measured in three north Norwegian fjords during a spring bloom dominated by diatoms and the haptophyte Phaeocystis pouchetii. Majority of the copepod diet consisted of diatoms, mainly Thalassiosira spp. and Chaetoceros spp., with clearance rates up to 10 ml ind−1 h−1 for individual algae species/groups. Egg production rates were high, ranging from ca 40 up to 90 eggs f−1 d−1, with a hatching success of 70–85%, and fast naupliar development through the first non-feeding stages. There was no correlation between the egg or nauplii production and diatom abundance, but the hatching success was slightly negatively correlated with diatom biomass. However, the overall high reproductive rates suggested that the main food items were not harmful for C. finmarchicus reproduction in the area, although direct chemical measurements were not conducted. The high population egg production (>1,20,000 eggs m−2 d−1) indicated that a large part of the annual reproduction took place during the investigation, which stresses the importance of diatom-dominated spring phytoplankton bloom for population recruitment of C. finmarchicus in these northern ecosystems.  相似文献   

18.
The effects of light exposure on the photosynthetic activity of kleptoplasts were studied in the sacoglossan mollusc Elysia viridis. The photosynthetic activity of ingested chloroplasts was assessed in vivo by non-destructively measuring photophysiological parameters using pulse amplitude modulation (PAM) fluorometry. Animals kept under starvation were exposed to two contrasting light conditions, 30 μmol photons m−2 s−1 (low light, LL), and 140 μmol photons m−2 s−1 (high light, HL), and changes in photosynthetic activity were monitored by measuring the maximum quantum yield of photosystem II (PSII), F v/F m, the minimum fluorescence, F o, related to chlorophyll a content, and by measuring rapid light-response curves (RLC) of relative electron transport rate (rETR). RLCs were characterised by the initial slope of the curve, αRLC, related to efficiency of light capture, and the maximum rETR level, rETRm,RLC, determined by the carbon-fixation metabolism. Starvation induced the decrease of all photophysiological parameters. However, the retention of photosynthetic activity (number of days for F v/F m > 0), as well as the rate and the patterns of its decrease over time, varied markedly with light exposure. Under HL conditions, a rapid, exponential decrease was observed for F v/F m, αRLC and rETRm,RLC, F o not showing any consistent trend of variation, and retention times ranged between 6 and 15 days. These results suggested that the retention of chloroplast functionality is limited by photoinactivation of PSII reaction center protein D1. In contrast, under LL conditions, a slower decrease in all parameters was found, with retention times varying from 15 to 57 days. F v/F m, αRLC and rETRm,RLC exhibited a bi-phasic pattern composed by a long phase of slow decrease in values followed by a rapid decline, whilst F o decayed exponentially. These results were interpreted as resulting from lower rates of D1 photoinactivation under low light and from the gradual decrease in carbon provided by photosynthesis due to reduction of functional photosynthetic units.  相似文献   

19.
Oxygen consumption and tail beat frequency were measured on saithe (Pollachius virens) and whiting (Merlangius merlangus) during steady swimming. Oxygen consumption increased exponentially with swimming speed, and the relationship was described by a power function. The extrapolated standard metabolic rates (SMR) were similar for saithe and whiting, whereas the active metabolic rate (AMR) was twice as high for saithe. The higher AMR resulted in a higher scope for activity in accordance with the higher critical swimming speed (U crit) achieved by saithe. The optimum swimming speed (U opt) was 1.4 BL s−1 for saithe and 1.0 BL s−1 for whiting with a corresponding cost of transport (COT) of 0.14 and 0.15 J N−1 m−1. Tail beat frequency correlated strongly with swimming speed as well as with oxygen consumption. In contrast to swimming speed and oxygen consumption, measurement of tail beat frequency on individual free-ranging fish is relatively uncomplicated. Tail beat frequency may therefore serve as a predictor of swimming speed and oxygen consumption of saithe and whiting in the field.  相似文献   

20.
The effect of irradiance, prey concentration and pH on the growth and grazing responses of the mixotrophic prymnesiophyte Chrysochromulina ericina under N-and P-replete conditions was studied using the pedinophyte Marsupiomonas pelliculata as prey. The two organisms were inoculated in monocultures and in mixed cultures at different predator: prey ratios at three irradiances and allowed to grow for 4–7 days. All cultures were non-axenic. Algal densities and pH were monitored throughout the experiments and growth and grazing rates were measured. An increase in growth of C. ericina cultures at irradiances of 25 and 70 μmol photons m−2 s−1 was observed after the addition of prey, while growth of C. ericina cultures at the high irradiance (150 μmol photons m−2 s−1) was unaffected by the addition of prey. However, although the growth of C. ericina increased at low irradiance (25 μmol photons m−2 s−1), it did not reach the same level as monocultures at the high irradiance (150 μmol photons m−2 s−1), suggesting that phagotrophy can only partly replace photosynthesis in C. ericina. Maximum growth rates of C. ericina at irradiances of 25 and 70 μmol photons m−2 s−1 were obtained at concentrations of > 0.15–0.3×105 M. pelliculata ml−1, corresponding to 50–100 μg C 1−1. Ingestion of M. pelliculata cells by C. ericina did not generally follow Michaelis—Menten kinetics. Deviation from the expected saturation kinetics was especially pronounced at irradiances of 70 and 150 μmol photons m−2 s−1. At these irradiances ingestion of M. pelliculata cells by C. ericina decreased at high concentrations of M. pelliculata, indicating an increased uptake of bacterial prey in these cultures. The growth rate of C. ericina was affected in both monocultures and in mixed cultures when pH increased above 8.6, and growth stopped around pH 9. The prey alga M. pelliculata tolerated high pH better and, consequently, took over in the mixed cultures when pH exceeded 9. The ecological significance of mixotrophy in the genus Chrysochromulina is discussed. Published online: 4 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号