共查询到2条相似文献,搜索用时 0 毫秒
1.
基于流域或区域点源和非点源磷入河过程的水文学差异,以及影响河流持留作用的主要机制,建立了描述河流段末磷负荷量与流量和水温之间定量关系的二元统计模型;通过逐月的河流水文水质监测数据对模型中4个系数的有效校正和验证,实现了对点源和非点源磷入河过程的准确定量.与现行的水文估算法相比,该模型既考虑了河流磷的持留能力及其时间变异性,也考虑了上游水体输入的磷负荷量,推进了对磷污染过程的定量认识,满足了我国以行政区为主要水污染控制管理单元的现实需要.应用该模型,计算了浙江长乐江集水区2004~2009年的总磷(TP)入河量.结果表明,TP年入河总量为(54.6±11.9)t.a-1,其上游水体输入、点源和非点源的入河量贡献率分别为5%±1%、12%±3%和83%±3%.夏季5~6月和8~9月的非点源TP累计入河量占其全年的50%±9%,增加了引起下游水体藻类暴发的风险.河流TP持留量为(4.5±0.1)t.a-1,占年入河总量的9%±2%;5~9月的TP累计持留量占全年的55%±2%,表明河流持留能力对流域或区域磷素迁移转化过程的调控作用不容忽视.本研究建立的二元统计模型仅需常规的河流水文水质监测数据,无需专业软件知识,且计算结果直接来源于实际的河流水文水质测算值,为实施流域或区域磷污染总量控制策略提供了一种简便、实用、可靠的定量工具. 相似文献
2.
模拟珠江河网的污染物通量及外源输入对入河口通量的贡献 总被引:1,自引:0,他引:1
基于一维河网与三维河口耦合水质模型,模拟计算了2000年珠江上游输入河网以及河网输入河口的碳质生化需氧量(CBOD)、氨氮(NH4)、硝态氮与亚硝态氮(NO3)和无机磷(IP)等污染物通量,并结合数值实验,量化了外源输入(包括入河网污染物通量与河网污染负荷)对入河口污染物通量对河网区的贡献.研究结果表明,河网区的污染物通量由入河网通量与河网污染负荷共同控制,通量分配具有显著的空间差异;上游各水系中,以西江的通量最大,约占入河网通量的71%~81%;8个入海口门中,以虎门、磨刀门的通量最大,两者共承接超过一半的入河口通量.此外,数值实验表明,入河网通量与河网污染负荷对CBOD、氨氮的入河口通量均有显著贡献,而硝态氮与亚硝态氮、IP的入河口通量则主要来自入河网通量;磨刀门、虎门分别是入河网通量、河网污染负荷最主要的输出口门.基于模型,亦针对入河口CBOD、氨氮通量对河网污染负荷的响应关系进行了探讨. 相似文献