首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An energy budget was constructed for a population of the sea urchin Strongylocentrotus droebachiensis in the nearshore area of St. Margaret's Bay, Nova Scotia, Canada. Of the 6 age classes identified, ages 1+and 2+accounted for about 1/2 the population energy flow. Population production efficiencies were: production/assimilation=0.28, production/consumption=0.04 to 0.13, and production/biomass=0.80. Although S. droebachiensis was the dominant herbivore in the seaweed bed, it utilized only 1 to 7% of seaweed production. As with other populations of sea urchins, however, it had a proportionately greater influence on seaweed biomass, and also presumably production, by clearing seaweed from large areas of substrate and maintaining it clear. Loss of dissolved organic matter, the only term in the energy budget not measured, was estimated by substracting the other terms in the energy budget from consumption. In laboratory individuals, this ranged from 40 to 80% of absorption (consumption-faeces). A critical review of energy budgets for 6 other species of marine benthic grazers also revealed large amounts of energy unaccounted for that might be attributed to loss of dissolved organic matter.Contribution to the International Biological Program CCIBP 192Bedford Institute Contribution.  相似文献   

2.
Basing on a quantification of filtration, ingestion, assimilation, biodeposition, excretion and respiration rate, energy budgets were established in Mytilus chilensis Hupé in relation to body size and three different food concentrations of the unicellular green alga Dunaliella marina. The present quantifications revealed that in M. chilensis the ingestion rate only increases slightly with an increase in food concentration which, however, is counterbalanced by a significant decrease in assimilation efficiency in such a way that assimilation rate finally is nearly constant and independent of the food concentrations tested. The quantifications of these results are given by the a-values of the general allometric growth equation P=aWb relating the energy disposable for growth and reproduction (P; cal d-1 to body size (W; dry-tissue wt, g). The best energy budget was obtained at the lowest food concentration tested (0.8 mg algal dry wt l-1; at 12°C and 30 S) with an a-value of 58.8, while the energy budget at the highest food concentration (2.14 mg l-1) was only slightly lower with an a-value of 49.8; the b-values were 0.49 and 0.51, respectively. The net growth efficiencies (K2) decreased with increasing body size (from 20 mg to 3 000 mg drytissue wt) from 76.7 to 47.9% at the lowest food level and from 72.6 to 44.0% at the highest food level tested. These relatively high net growth efficiencies seem to reflect optimal experimental conditions. Furthermore, by a comparison of estimated growth (calculated on the basis of the best energy budget) with growth actually quantified in culture raft mussels in the south of Chile during the highest production period of the year, it is obvious that the energy budgets established really reflect the conditions experienced by the mussels in their natural environment.This research was supported by grants S-80-3 and C-80-1 of the D.I.D.-UACH, by CONICYT, Found. Volkswagenwerk, Found. Fritz-Thyssen, by the GTZ, DFG and by the DAAD  相似文献   

3.
Energy budgets are proposed for four teleost and two elasmobranch species as well as for the main icthyofauna groups for a surf-zone ecosystem. The ecology of surf-zone fishes of eastern Cape beaches, Algoa Bay South Africa, is reviewed. Using the equationC=F+U+R d +R R +B, the following general energy budgets were derived for fishes: teleosts – 100=10+4+21+23+42; elasmobranchs – 100=11+2+16+24+48; whereC: food consumption;F: faeces;U: nonfaecal excretion;R d : apparent specific dynamic action;R R : routine metabolism;B: growth. These show that most of the energy consumed is used in metabolism (R d +R R ) and growth (B) whereas excretion (U) only accounts for a small portion. The energy budgets developed are within ranges recorded for other species. The main feeding groups of surf-zone icthyofauna are the southern mulletLiza richardsonii, the sandsharkRhinobatos annulatus, benthic feeders, zooplankton feeders, omnivorous and piscivorous fish with biomass values of 1000, 1000, 3000, 2400, 400 and 400 kJ m–1, respectively; and annual consumption budgets of 22107, 13725, 65710, 65476, 9758 and 8517 kJ m–1 yr–1, respectively.L. richardsonii feeds mainly on surf diatoms, consuming 0.5% of total diatom production. Zooplankton production supplies 91%, and macrobenthic production 9%, of the energy needs of other non-piscivorous carnivorous fishes. Piscivorous fishes consume 30% of the available fish production. Nonfaecal-energy production (8229 kJ m–1 yr–1) is utilised by surf diatoms, and faecal-energy production (30 341 kJ m–1 yr–1), is returned to the detritus pool to be utilised by the microbial loop in surf-waters. Our current knowledge of surf-zone energetics indicates that fishes are important predators. This study confirms the concept that the ecosystem generates adequate food for the fish assemblage. Fishes recycle energy, as excretory products, via the detritus pool and surf-diatoms, while fishes moving across the outer boundary of the surf-zone export energy from the system. Data presented, therefore, also support the general concept of a self-sustaining beach/surf-zone ecosystem.Please address all correspondence and requests for reprints to Dr Du Preez at his present address: Research Unit for Fish Biology, Rand Afrikaans University, P.O. Box 524, Johannesburg 2000, Republic of South Africa  相似文献   

4.
Barnacles of the same species (Balanus glandula) show differences both in shell morphology and in their ability to resist crushing from impact at two sites within 8 km of each other which differ in their natural exposure to wave-borne debris (Cattle Point and False Bay, San Juan Island, Washington, USA). In studies performed in 1987, barnacles with shells of a given base diameter at the site exposed to more impact (Cattle Point) were found to have smaller bodies, shorter and thicker shells, and a more protected placement of their opercular valves than barnacles at the protected site. When tested with a standard impact, barnacles from the exposed site were more resistant to crushing both on the first impact and (for those surviving that test) on a second impact 2 wk later. The morphological differences between the two populations may be due to a combination of different shell: body growth rate ratios at the two sites plus passive remodelling of the exposed barnacles by small impacts. The morphological changes at the exposed site, although gained passively, fortuitously provide improved performance in resisting crushing from impact.Sessile Cirripedes, partly from being attached to surfaces having very different characters, partly from undergoing a varying amount of disintegration, and partly from unknown innate causes, are extremely variable As whole groups of specimens often vary in exactly the same manner, it is not easy to exaggerate the difficulty of discriminating species and varieties.Darwin (1854)  相似文献   

5.
Feeding observations revealed that Acanthina spirata (Blainville, 1832) uses the shell spine in a ramming and prying motion, resulting in the fracturing and/or forcing open of opercular plates in the barnacles Balanus glandula (Darwin, 1854) and Chthamalus fissus (Darwin, 1854). Attacking barnacles by using the shell spine may represent a second widespread feeding mechanism (in addition to drilling) in muricacean gastropods. Specialization of the shell spine for attacking barnacles is advantageous over drilling within the context of an optimal foraging theory. Rockey intertidal field and laboratory experiments at Palos Verdes and Los Angeles, California, respectively, in 1981–1982 revealed, that snails with a shell spine have lower handling times and feed at a greater rate than spineless snails which drill their prey. Spine penetration of prey as opposed to drilling takes considerably less time than a tidal cycle. This is expected to increase the success rate for completion of feeding, since during tidal flux snails risk being dislodged. Plasticity in attack mechanisms allows A. spirata with broken spines to penetrate prey by drilling while undergoing spine repair. Differences exist in spine-feeding by A. spirata on B. glandula and C. fissus. The attack process takes more than twice as long when snails attack B. glandula versus C. fissus. However, there is no difference in the mean number of spine thrusts required to penetrate the opercular plates of the two species. When feeding on the larger barnacle B. glandula, A. spirata ingests significantly greater dry weight per unit handling time than with C. fissus.  相似文献   

6.
This paper describes a carbon budget for the spring phytoplankton bloom in Auke Bay, a subarctic bay in southeastern Alaska. The budget was constructed using semiweekly data on carbon production, particulate carbon in the water column, and cumulative sedimentation of carbon, chlorophyll a, and pheopigments. From these measured parameters, seasonal carbon consumption, utilization, and import/export terms were derived. The chlorophyll and pheopigment data were used to partition carbon sinking out of the photic zone between phytoplankton cells and fecal material. The difference between total carbon production and carbon available for consumption was attributed primarily to carbon import/export related to advection of water masses into and out of the bay. Separate budgets were developed for each of five sampling years (1985–1989). An average of 130±16 g C/m2 were produced by phytoplankton during each spring. Our model suggests that an average of 70% of this carbon was available for consumption by grazers within the bay; the remaining 30% is assumed to have been exported from the bay by advective transport. Of the available (non-exported) carbon, an average of 55% was consumed by grazers, 34% sank out of the photic zone in the form of uneaten algae, and about 11% remained at the end of the sampling period in the form of phytoplankton standing stocks. Overall, about 27% of the carbon produced each spring in Auke Bay (35 gC/m2) was used for growth and respiration by first-order consumers within the bay.  相似文献   

7.
An energy budget for Porites porites (Pallas) was determined for specimens from 10 m depth on the Fore Reef of Discovery Bay, Jamaica, between July 1984 and July 1985. Evidence for habitual zooplankton ingestion was not obtained, and P. porites appears to be largely autotrophic. Out of the daily photosynthetically fixed energy, 26% is used for animal respiration and growth, 22% for zooxanthellae respiration and growth, and <1% for colony reproduction as mature planulae; 45% remains unaccounted for. Colony respiration, net photosynthesis, colony skeleton and tissue growth, zooplankton ingestion, reproductive effort and energy content of tissues were measured. Energy loss as continuous mucus secretion was not detected, but may occur by an alternative route via mucus tunics, which occur periodically in situ and in the laboratory. The energy budget suggests that a considerable excess of photosynthetically fixed energy is produced on an ideal sunny day at 10 m depth. This surplus may be required for periodic rather than continuous energy demands, or may be essential to survive less-than-ideal days, when net photosynthetic input is reduced.Contribution No. 357 of the Discovery Bay Marine Laboratory, University of the West Indies  相似文献   

8.
Energy budgets were determined for small pieces (nubbins) of the coralsPocillopora damicornis, Montipora verrucosa andPorites lobata living at a water depth of 3 m on the fringing reef of Coconut Island, Kaneohe, Hawaii. The budgets were determined for three different types of day: an ideal day with no cloud and an in situ daily integrated irradiance at 3 m of 14.385 E m–2 d–1; a normal day with sporadic cloud cover and daily irradiance of 11.915 E m–2 d–1; and an overcast day with daily irradiance of 6.128 E m–2 d–1. On the ideal day, the energy fixed in photosynthesis was more than that required for respiration and growth of both zooxanthellae and animal components of the association, and there was a predicted loss of between 19.3 and 32.4% of the energy fixed. On a normal day, the total photosynthetic energy fixation was lower and the excess was between 12.1 and 27.9% of the energy fixed. On the overcast day, however, in bothPocillopora damicornis andPorites lobata energy expenditure exceeded photosynthetic energy fixation and the budget was in deficit. Estimates of rate of mucus secretion on an overcast day were derived and, when incorporated into the energy budget, it was predicted that all three species would have a deficit budget, necessitating the catabolism of lipid reserves. From published values for lipid storage in these species it was calculated that the reserves would last from 28 d inPocillopora damicornis to 114 d inM. verrucosa. A model is suggested in which corals draw upon their extensive lipid stores on days of sub-optimal light, replenishing the reserves again when daily light levels are high, and finally excreting the excess energy fixed, as mucus-lipid when the lipid stores are replete.  相似文献   

9.
Methane mussels (Bathymodiolus sp., undescribed; personal communication by R. Turner to CRF) were collected in September 1989 and April 1990 from offshore Louisiana in the Gulf of Mexico. These mussels contain endosymbiotic methane-oxidizing bacteria and are capable of utilizing environmental methane as a source of energy and carbon. Oxygen consumption, methane consumption, and carbon dioxide production were measured in mussels with intact symbionts, functionally aposymbiotic mussels, and separated symbiont preparations under controlled oxygen and methane conditions, in order to study the roles of the symbionts and the hosts in methane utilization. The association was found to be very efficient in fixing methane carbon (only 30% of CH4 consumed is released as CO2), and to be capable of maximal rates of net carbon uptake of nearly 5 mol g-1 h-1. Rates of oxygen and methane consumption were dependent upon oxygen and methane concentrations. Maximal consumption rates were measured at 250 to 300 M O2 and 200 to 300 M CH4, under which conditions, oxygen consumption by the gill tissues (containing symbionts) had increased more than 50-fold over rates measured in the absence of methane. A model is proposed for the functioning of the intact association in situ, which shows the symbiosis to be capable of achieving growth rates (net carbon assimilation) in the range of 0.003 to 0.50% per day depending upon oxygen and methane concentrations. Under the conditions measured in the seep environment (200 M O2, 60 M CH4), a mussel consuming methane at rates found to be typical (4 to 5 mol g-1 h-1) should have a net carbon assimilation rate of about 0.1% per day. We suggest that the effectiveness of this symbiosis arises through integration of the morphological and physiological characteristics inherent to each of the symbiotic partners, rather than from extensive specialization exhibited by other deep-sea chemotrophic associations.  相似文献   

10.
The energetics and population dynamics of a barnacle (Balanus glandula Darwin) population in British Columbia, Canada, were studied. Consumption, energy flow, production and mortality were 6844.6, 6667.0, 2896.5 and 2522.8 Kcal m-2 year-1, respectively. These energy flow and production values are among the highest for animal populations reported, and therefore strongly suggest the functional importance of E. glandula in littoral systems. The young age groups of the first-year settlements were most important in contributing to the energy flow, production and reproduction of the entire population. Most of the assimilated energy in the older age groups was used in respiration.  相似文献   

11.
For crustaceans with a well-defined annual molting season, such as adult female Dungeness crabs (Cancer magister Dana), setal molt staging can, in principle, be used to predict molting destiny of individual crabs. Size-specific predictions of molting probability could, in turn, be useful for estimating mortalities due to molting. Female Dungeness crabs were collected January–March 1997 at depths of 10–30 m off the California coast, USA (41°N). Intermolt stage A1–C4 and premolt stages D0, D1, D1, D1 and D2 were described based on features of the branchial epipod. Laboratory experiments suggested that stage D1 was the earliest stage beyond which eventual molting was inevitable so that molting destiny could be determined. Estimated mean number of days from the beginning of stage D1 to molting was 85. Estimated individual stage durations, based on laboratory experiments, were 24, 51, –4, 18, and 20 days, respectively, for stages D0, D1, D1, D1, and >D2. The estimated –4 days for stage D1 suggests that this stage must be very brief and raises a question of its utility in designation of molt stages. Molt staging of three field samples, 300–600 crabs in each, collected prior to the 1997 annual molting season, indicated an increase in the size and frequency of crabs staged D1 or later as the time to molt approached, although crabs of 150 mm carapace width and larger showed few signs of molt preparation. Because the duration of the molting season (approximately 120 days) for adult female C. magister in northern California exceeds the estimated maximum duration of reliable prediction of molting destiny (85 days), it does not appear that molt staging can be used to predict molting destiny in this population. However, the procedures that we have used in this paper for application to female C. magister might be used with success for other crustaceans if the duration of stages D1 to molting exceeds the duration of the molting season, and furthermore may be used for describing temporal molting trends.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
Aplodactylus punctatus is a temperate berbivorous fish that changes from an omnivorous to a herbivorous diet and increases its ability ot assimilate algae as it grows. To investigate whether this dietary shift is related to size-specific differences in energetic demands imposed by metabolism and the amount of assimilated energy, oxygen consumption ( ) was determined experimentally in 12 specimens ranging in size from 62 to 545 g. increased allometrically with body size from 8.41 to 55.95 mg O2 individual-1 h-1. Individual energetic requirements were 2.8 to 33.7 kJ d-1. The assimilated energy was estimated, taking into consideration: (1) the energetic value of the most important alga in the diet (Lessonia trabeculata); (2) size-specific differences in assimilation rates for fish fed on this alga; (3) size-specific differences in throughput time and in the amount of food in a full gut. Comparison of the energy required and the assimilated energy revealed that fishes of < 22 to 29 cm total length had a negative energetic balance when consuming algae exclusively. This may explain the reliance of smallA. punctatus on more easily-digested invertebrates. The largest individuals can meet their energetic demands by consuming algae alone, apparently because of their higher assimilation capability. InA. punctatus, changing energetic requirements and capacities for algal assimilation may be responsible for the observed ontogenetic change in diet.  相似文献   

13.
Stomach contents from 809 king crabs, Paralithodes camtschatica (Tilesius), from 6 areas near Kodiak Island, Alaska, and 9 sampling periods (1978–1979) were exammed quantitatively; 713 (88%) contained food. Mollusca (mainly the bivalves Nuculana spp., Nucula tenuis, and Macoma spp.) and Crustacea (mainly barnacles) were the dominant food groups in terms of percentage wet weight and frequency of occurrence; fishes were the next most important group of prey. No significant differences in feeding between sexes occurred; however, significant differences were apparent in the quantity of food consumed from different sampling periods, areas, depths, size groups, and crab molt-classes. Consumption was greater in spring and summer and in offshore locations at depths of 126 to 150 m. In addition, king crabs <140 mm carapace length (CL) consumed more food than crabs 140 mm CL. Adult, newshell (individuals that molted during the last molting period) females greater than 95 mm CL, and newshell males greater than 100 mm CL, each contained more food than did juvenile, newshell females <120 mm CL.Contribution No. 449, Institute of Marine Science, University of Alaska, Fairbanks, Alaska 99701, USA  相似文献   

14.
Energy budgets were calculated for individuals of the sea anemone Anthopleura elegantissima (Brandt), collected in 1981 and 1982 from Bodega Harbor, California, USA. Rates of ammonium excretion were measured in high-and low-intertidal, symbiotic and aposymbiotic sea anemones within 24 h of collection. Among symbiotic and aposymbiotic individuals, no differences in excretion rate were found on the basis of intertidal height. However, rates of ammonium excretion in aposymbiotic anemones (2.14 mol NH + 4 g-1 h-1) were significantly higher than in symbiotic ones (0.288 mol NH + 4 g-1 h-1). Rates of excretion were used with estimated rates of oxygen uptake to calculate nitrogen quotients (NQ). NQ and RQ values from the literature were used to calculate an oxyenthalpic equivalent [501 kJ (mol O2)-1 for R+U], and mass proportions of protein (54%), carbohydrate (44%) and lipid (2%) catabolized during routine metabolism in this species 24 h after feeding. Integrated energy budgets of these experimental anemones were calculated from data on ingestion, absorption and growth, and estimates of translocated energy from the symbiotic algae. Contribution of zooxanthellae to animal respiration based on translocation=90% and RQ=0.97 are 41 and 79% in high-and low-intertidal anemones, respectively. Calculated scope for growth is greater than directly measured growth in both high-and low-intertidal individuals. The deficit, estimated as 30% of assimilated energy in high-intertidal anemones, is attributed to unmeasured costs (specific dynamic effect) or production (mucus). Low-intertidal anemones lost mass during the experiment, implying that the magnitude of the deficit was greater in these anemones than in upper intertidal individuals. Anemones from both shore levels lost zooxanthellae during the experiment, which contributed to energy loss since the contribution of the zooxanthellae is greater in low-intertidal anemones. Scope for growth is preserved in high-intertidal anemones (29% of assimilated energy) because metabolic demands are lower due to aerial exposure, and prey capture rate is higher compared to lowshore anemones. Although possibly underestimated, lower scope for growth in low-shore anemones may result from continuous feeding and digestion processes that are less efficient than those of periodically feeding high-intertidal anemones.  相似文献   

15.
Diel molting cycles of megalopae and first instar Dungeness crabs Cancer magister Dana captured in the Grays Harbor estuary (46° 55N; 124° 05 W) in May 1991 were studied under laboratory conditions. Sixtyone percent of the megalopae and 76% of the first instar crabs molted during periods of ambient darkness under a normal light — dark diel regime, and molting pattern was not affected by changes in the photoperiod (24 h daylight or 24 h darkness). Time until metamorphic molt increased as conspecific density increased. Habitat type (shell or mud) did not affect time until molt of megalopae and first instar crabs, nor did it affect daily molting rhythm of first instars. We hypothesize that nightly ecdysis of megalopae and first instar Dungeness crabs and density-dependent molting may be an adaptive response to predation and cannibalism among young-of-the-year.Contribution No. 875 from the School of Fisheries, WH-10, University of Washington, Seattle, Washington  相似文献   

16.
G. D. Parry 《Marine Biology》1982,67(3):267-282
Reproductive effort was measured in 4 species of intertidal limpets: Cellana tramoserica (Sowerby) Notoacmea petterdi (Tenison Woods), Patella peroni Blainville and Patelloida alticostata (Angas) from south-eastern Australia. Field studies between 1971 and 1975 enabled indices of reproductive effort to be obtained using both gonad to body weight ratios and energy budgets. The ratio of annual gonad production to somatic tissue energy content is highest for Patella peroni (2.19). The ratios for C. tramoserica and Patelloida alticostata are lower but similar (1.02), and N. petterdi has the lowest ratio (0.78). The percentage of assimilated energy allocated to reproduction is also highest in Patella peroni (26.6%), but this index of reproductive effort is similar for the other three species (10.3 to 12.9%). Consequently, these 4 species are ranked in different orders with respect to reproductive effort, depending upon which index is used. However, the difference between both indices is small, and is less than has usually been anticipated. The difference is interpreted as being the result of the low metabolic rate of N. petterdi rather than as evidence for the inadequacy of one of the indices of reproductive effort.  相似文献   

17.
The response of benthos to sedimentation of the spring phytoplankton bloom in the Kiel Bight (Western Baltic Sea) is described in terms of biomass (ATP) and activity (heat production and ETS-activity). Input of the bloom (11.5 g C m-2) over a period from March 25 to April 19, 1980 to the sediment surface was in the form of cells and fresh phytodetritus as indicated by low C/N ratios (7) and high energy charge values (0.78). Benthic microbial activity was immediately stimulated by this input as heat production doubled and the activity of ETS tripled over winter values within 12 d in the absence of a significant increase in ambient temperature. A comparison of the two activity parameters suggests that anaerobic metabolism is more important during the winter (February and March) than after input of the bloom. Meiofauna was not able to take part in the first activity outburst. Benthic ATP-biomass (excluding macrofauna) doubled in late April due to microbial production, and doubled again in early May when meiofauna started reproductive activity. For macrofauna a general statement was not possible, although the sediment surface feeder Macoma baltica commenced a build up of glycogen and lipid resources immediately following bloom input whereas Nephtys ciliata, feeding on sediment and small macrofauna, showed a less pronounced and delayed effect from this input. An energy budget based on heat production measurements was calculated. A daily heat loss of the benthic community of 21.7 KJ m-2 d-1 (35.5 KJ m-2 d-1) was found, when a depth of 3 cm sediment (5 cm) was assumed. Heat production of macrofauna contributed less than 5% of this activity. The input of the bloom was burned within 21 (13) d. Preliminary estimations for an annual budget suggest that the vertical transport of particulate organic matter via sedimentation can only explain 25% (15%) of the benthic activity in the shallow water ecosystem of the Kiel Bight. This indicates the presence of other sources of organic carbon such as benthic primary production or other transport processes providing carbon to the sediments.Publication No. 384 of the Joint Research Program of Kiel University (Sonderforschungsbereich 95)  相似文献   

18.
The chlorinated hydrocarbon pesticide Kelthane was assayed for effects on food consumption, molting rate, cannibalism, respiration, mortality and behavior of the estuarine shrimp Crangon franciscorum Stimpson. The test system was a single-pass pulse-flow apparatus employing a modified Mount-Brungs style diluter. Treatment levels were 0, 14, 33 and 81 g l-1 Kelthane at 16.6°C and 19 S over an exposure period of 317 h. Exposure to Kelthane reduced food consumption, molting rate, cannibalism, and respiration. Behavior also was abnormal in exposed shrimp. They spent more time swimming, were less coordinated and had feeble escape reactions. Kelthane was very toxic to C. franciscorum with LT50 values of 163, 196 and 264 h for shrimp exposed to 81, 33 and 14 g l-1 respectively. The incipient lethal level of Kelthane is probably below 14 g l-1.  相似文献   

19.
Population energy budgets estimated on the assumption of steady state conditions for Nerita tessellata Gmelin, N. versicolor Gmelin, and N. peloronta L. on Barbados, W. Indies, are presented. Large differences in population structure, and hence energetics, occurred at different localities along the beach. Relatively high proportions (81 to 88%) of the assimilated energy were lost via metabolism. Assimilation efficiencies ranged from 39 to 43%, net growth efficiencies from 5 to 13%, and ecological efficiencies from 3 to 7%. For each species, production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy components for other populations for which data on size-frequency and density are available. Respiration studies of all three species in the laboratory failed to detect differences between respiration rates in air or under seawater.  相似文献   

20.
Phytoplankton intracellular nitrate concentrations have been monitored in a 56-h experiment on a shipboard culture of surface sea water from an upwelling region. These measurements were related to parameters of biomass (particulate nitrogen) and nitrate assimilation using the 15N isotope technique and the nitrate reducase (NR) assay. The procedure for measuring cellular nitrate concentrations is described. This parameter exhibited diurnal variations, ranging from 3.1 to 20.6 ng-at nitrate per g-at particulate nitrogen, and could be correlated positively with NR activity. Nitrogen budgets show that NR activity represents only 12% of nitrate incorporation in organic phytoplankton material when nitrate is available in the sea water. However, upon depletion of the environmental nitrate (zero uptake), NR activity can fully account for the decrease of internal nitrate. From the results, it seems that internal nitrate content is a better index of nitrate consumption by marine phytoplankton than the external concentration of nitrate-nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号