首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The European Raja clavata and the South African R. straeleni are marine skates which exhibit highly conserved morphological and ecological traits. Owing to this, taxonomic and evolutionary relationships between the two taxa have not yet fully elucidated. Here, we have tested the hypothesis that restricted gene flow and genetic divergence between these taxa might be associated with climatic/oceanographic discontinuities by surveying genetic variation in ten geographical samples at control region (CR) and amplified fragment length polymorphism (AFLP) loci. The clustering of CR haplotypes in two reciprocally monophyletic clades consistent with taxon zoogeography and the significant AFLP F values between the European and South African populations indicated the two taxa as recently diverged peripatric sibling species. Within each species, significant spatial genetic heterogeneity among samples at both markers revealed population structuring. We argued that structured populations and isolated sibling species might represent two stages of geographical speciation.  相似文献   

2.
A pronounced north–south multitaxon genetic discontinuity occurs in central New Zealand (NZ). Polymorphic microsatellite markers have been used to test the location and structure of this discontinuity in the endemic greenshell mussel, Perna canaliculus. Nine neutral loci revealed limited evidence of genetic structure, but one outlier locus (Pcan1-27) which may be under selection provided evidence of the discontinuity in central NZ. Whilst the limited multilocus evidence of structure is assumed to result from high levels of gene flow among populations of this continuously distributed species, assignment tests indicated high to very high mean levels of self-recruitment within the 14 populations and the north and south regions. The nine neutral loci were unable to provide further clarification as to the geographic location of the discontinuity, whereas the Pcan1-27 locus was particularly informative. These results highlight a tension between limited evidence of genetic structure and presumptive high gene flow among populations versus high levels of self-recruitment and pronounced structure depending on microsatellite loci and analyses in question. Evidence from all 10 loci indicates that the genetic discontinuity is maintained by high levels of self-recruitment, and evidence from Pcan1-27 suggests that selection may also be important in explaining the existence of the discontinuity.  相似文献   

3.
Glycera dibranchiata Ehlers and G. americana Leidy are two closely related and similar species of polychaetes. Electrophoretic studies of 11 enzyme systems encoded by 15 loci reveal that both species are polymorphic at about 50% of their enzyme loci, but that G. dibranchiata is the more variable as judged by heterozygosity per individual, genetic diversity, and effective number of alleles per locus. Both species show marked heterozygote deficiencies at nearly all polymorphic loci, possibly as the result of life-history features. Genetic similarity between the Glycera species suggests divergence at a level between species and sibling species compared to the Drosophila willistoni complex.  相似文献   

4.
The cobblerCnidoglanis macrocephalus (Valenciennes) is an endemic marine and estuarine catfish from southern Australia. Conflicting views on the degree of isolation of the estuarine populations underscore general questions about genetic divergence in coastal species. Although estuaries are widely recognized as ecologically important, little work has been done on their role in favouring genetic divergence. In order to estimate the extent of genetic subdivision among nearshore marine and estuarine populations, electrophoretic variation of enzymes was examined in seven marine and six estuarine populations of cobbler from sites spanning 1500 km along the southwest Australian coastline. Among all populations, the mean standardized variance in allelic frequencies (F ST) for six polymorphic loci was 0.277, a high value comparable to those of other shallow-water teleosts whose life-history characteristics and habitat preferences restrict their dispersal capability. The pattern of genetic identities between populations showed divergence between west and south coast sites. Within these regional groups, however, there was substantial heterogeneity, much of which was associated with estuaries. Among all six estuarine sites, the averageF ST was 0.333, 40% higher than the value of 0.237 for the marine sites. Low estimates of the genetically effective number of migrants suggest population subdivision between marine and estuarine environments and between similar habitat types. This study indicates the importance of habitat in affecting the connectedness of populations, even in apparently open marine systems.  相似文献   

5.
An examination by protein-gel electrophoresis of 19 different geographical populations of the American oyster Crassostrea virginica (Gmelin) was conducted along the Atlantic coast and the Gulf of Mexico. Estimates were made of levels of genetic variation and similarity among the populations based on 32 structural loci. The percentage of loci polymorphic ranged from 46.9 to 65.6% along the Atlantic coast while the estimate ranged from 54.8% to 68.8% on the Gulf of Mexico. The percentage of loci heterozygous ranged from 18.6 to 23.6% along the Atlantic coast and from 20.0 to 25.4% in the Gulf of Mexico. The genetic similarities between all contiguous populations from Cape Cod, Massachusetts to Corpus Christi, Texas were estimated as 99%, while the same estimate between Corpus Christi and Brownsville, Texas was computed as 93%, indicating a major transition in genetic structure for the Brownsville population of the Laguna Madre. The study revealed that the migration of planktonic oyster larvae is predominantly in a westerly direction along the Gulf of Mexico and that gene flow appears to be disrupted in the region of the Laguna Madre. Evidence has been presented for single gene selection at the Lap-2 and Pgi loci in the form of macrogeographical clines in allele frequencies with changing environmental conditions.  相似文献   

6.
Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape.  相似文献   

7.
Starch-gel electrophoresis was used to study gene-enzyme variation in thirteen populations of eight species of the genus Trapezia from Hawaii, Panamá, and Enewetak Atoll (Marshall Islands). Between 20 and 30 (mean = 27.8) gene-enzyme systems were resolved in each population, with 20 systems in common among all populations. The distribution of electrophenotypes was in agreement with Hardy-Weinberg-Castle expectations, except for T. digitalis, which consistently showed heterozygote deficiencies. Diagnostic loci among color forms support the hypothesis that color forms are distinct species. Low values of genetic distance among species suggest a recent radiation, perhaps during the Pleistocene. Genetic distance between the Hawaiian and Panamanian populations of T. ferruginea did not significantly differ from zero, indicating that the Eastern Pacific population of T. ferruginea has recently immigrated from the central Pacific, and/or that there is gene flow between the two areas. There were diagnostic loci between T. ferruginea and T. formosa from Enewetak and the populations of these species from Hawaii (T. ferruginea only) and Panamá (both species). Therefore, these geographic populations may represent separate species. The level and pattern of genetic variability in Trapezia spp. are in agreement with those observed in most other organisms.  相似文献   

8.
Levels of genetic polymorphism were surveyed at two enzyme loci (LAP, PGI) in 2 intertidal and 6 subtidal species of the bivalve genus Macoma living in the waters of the San Juan Islands (Washington and Canada). The temporal environmental variability-genetic variability hypothesis predicts that intettidal species should have greater levels of genetic polymorphism than subtidal species. This is not true for the genus Macoma. However, at the PGI locus, genetic polymorphism was proportional to niche breadth in both the intertidal and subtidal species, but only for intertidal species at the LAP locus. These results support the contention that temporal environmental variability is not necessarily important in maintaining genetic variability, but that environmental heterogeneity may select for increased polymorphism at some loci.  相似文献   

9.
B. Lavie  R. Noy  E. Nevo 《Marine Biology》1987,96(3):367-370
Allozymic variation encoded by 15 gene loci was compared and contrasted in naturally coexisting populations of two marine gastropods (Patella coerulea and Patella aspera) collected along the rocky beaches of the Mediterranean sea of Israel in June, 1979. The genetic variability did not differ consistently or significantly between the two species, but in all the populations studied, P. aspera was more heterozygous than P. coerulea. These results are discussed in terms of the potential ecological factors affecting this genetic differentiation.  相似文献   

10.
Most genetic surveys of captive and endangered populations are carried out with single gene characters bearing no direct relationship to life history or other features for which genetic variation needs to be maintained. Quantitative genetic estimates of heritable variation for life-history traits may be a more direct and appropriate measure of genetic variation for some conservation purposes. Furthermore, recent theoretical and empirical results indicate that genetic variation measured on these two levels may not be concordant. We analyzed heterozygosity at 41 allozyme loci and heritability for body weight in captive cotton-top tamarins ( Saguinus oedipus ) from the Marmoset Research Center of the Oak Ridge Associated Universities in order to compare these two levels of genetic variation. Cotton-top tamarins are a highly endangered species native to Colombia. Many animals currently reside in research facilities and zoological parks. A total of 106 animals were used in the isozyme survey, while data on 364 animals contributed to the quantitative genetic study of body weight. We found a very low average heterozygosity ( H = 1%) for this colony. Body weight was moderately and significantly heritable ( h 2 = 35%). This heritability is within the normal range for natural animal populations. The finding of biologically significant levels of heritability in a population with abnormally low allozyme heterozygosity illustrates the point that low levels of allozyme heterozygosity should not be taken as an indication of overall lack of genetic variation in important quantitative characters such as life-history traits. Genetic variation required for adaptation of species to future environmental challenges can exist despite low levels of enzyme heterozygosity.  相似文献   

11.
Self-recruitment rates are essential parameters in the estimation of connectivity among populations, having important consequences in marine conservation biology. Using ten highly polymorphic microsatellite loci, we estimate, over 3 years, the self-recruitment in a population of Tripterygion delaisi in the NW Mediterranean. Six previously described source populations were used for the assignment (Costa Brava, Columbretes, Formentera, Cabo de Palos, Cabo de Gata and Tarifa). Even though this species has a 16–21 day larval duration, a mean of 66.4 ± 1.4% of the recruits settled in their natal population. When refining in a more local scale the origin of individuals self-recruited to Costa Brava, using as source the three sampling localities that conform this population (Cap de Creus, Tossa and Blanes), the highest percentage (40.6 ± 8.9%) was self-assigned to the adult source locality (Blanes) where recruits were sampled each year. Our results suggest that a high proportion of the larvae of T. delaisi remained close to, or never leave, their natal spawning area. This observation can be extrapolated to other species with similar early life-history traits and low adult mobility and can have important implications for the conservation and management of Mediterranean littoral fishes.  相似文献   

12.
The spatial scale of life-history and demographic variation was investigated in the opportunistic polychaete Ophryotrocha labronica La Greca and Bacci. Individuals were collected along the Italian coasts from three thermally different biogeographical regions of the Mediterranean Sea. For each region, populations from four harbours were considered, and for each harbour, two sites were examined. Life-history and demographic traits were investigated after one generation under a common garden experiment, and their variation at the three spatial scales was assessed. All the traits showed high variability with regard to site. A number of life-history and all demographic traits also varied according to the biogeographical region. Conversely, no differences were found between harbours, suggesting that geographical isolation did not contribute to phenotypic variation. Results confirmed the central role of local conditions for the evolution of life history in species colonizing heterogeneous environments, but they also pointed to the importance of large-scale factors in shaping the phenotypic responses of O. labronica, demonstrating the need for a multi-scale approach for obtaining a good measure of natural variation in widespread opportunistic species.  相似文献   

13.
Life-history variation was studied in three sympatric species of Stylopoma Levinsen [S. spongites (Pallas), S. projecta Canu and Bassler and Stylopoma n. sp. 15] in Panamá. Bryozoan colonies were collected from 27 reefs along 300 km of the Caribbean coast of Panamá. The distribution and abundance of each species were very patchy, but with broad overlap in occurrence among localities and depths. Nevertheless, species differed considerably in colony size, size at first reproduction and numbers of brooding larvae; implying that interspecific differences in life-history traits may contribute to their coexistence. To examine closely this variation in life-history patterns, we grew, in a common garden experiment, the offspring of the two most common species that were obtained from parent colonies collected from several reefs. There were highly significant differences in growth rates and the timing and extent of sexual reproduction which corresponded well to patterns observed in individuals from the field. Other factors, including size of larvae, extent of secondary zooidal calcification and numbers of avicularia were also correlated with differences in life histories. Despite this additional complexity, however, ecological consequences of trade-offs in life history among modular species such as Stylopoma spp. appear very similar to those among unitary species.  相似文献   

14.
In order to confirm the status of two proposed species of the serpulid Pomatoceros, the electrophoretic mobilities of 13 enzymes encoded at 19 loci in P. lamarckii (Quatrefages) and P. triqueter (L.) were compared using horizontal starch gel electrophoresis. The serpulids were sampled from Menai Bridge (North Wales), Plymouth (England) and the Isle of Man in the winter of 1981/1982. Six loci were monomorphic or nearly so and showed no useful or significant difference between species. At a further 7 loci, some of the allozymes common to both species were present, though usually at significantly different frquencies, while others were species-specific. The remaining 6 loci presented species-specific allozymes. In P. lamarckii, 61% of the loci were polymorphic compared with 50% in P. triqueter. The mean observed heterozygosity was 0.169 for P. lamarckii and 0.208 for P. triqueter. Calculation of genetic distance and identity gave values of 0.821 and 0.440, respectively. This study, therefore, confirms the existence of two separate species of Pomatoceros as has been previously proposed on the basis of opercular structure and supported by ecological separation where these species occur sympatrically.  相似文献   

15.
Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species’ traits and species’ coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.  相似文献   

16.
A key question of evolutionary importance is what factors influence who becomes dominant. Individual genetic variation has been found to be associated with several fitness traits, including behaviour. Could it also be a factor influencing social dominance? We investigated the association between social status and the amount of intra-individual genetic variation in juvenile brown trout (Salmo trutta). Genetic variation was estimated using 12 microsatellite loci. Dominant individuals had higher mean heterozygosity than subordinates in populations with the longest hatchery background. Heterozygosity–heterozygosity correlations did not find any evidence of inbreeding; however, single-locus analysis revealed four loci that each individually differed significantly between dominant and subordinate fish, thus giving more support to local than general effect as the mechanism behind the observed association between genetic diversity and a fitness-associated trait. We did not find any significant relation between mean d 2 and social status, or internal relatedness and social status. Our results suggest that individual genetic variation can influence dominance relations, but manifestation of this phenomenon may depend on the genetic background of the population.  相似文献   

17.
Very few studies have investigated the effect of genetic diversity on the behavioral and phenotypic traits linked to the competitive ability of individuals. In this study, we reared juvenile Atlantic salmon (Salmo salar) alone or with the competitive rainbow trout (Oncorhynchus mykiss) in order to: (1) to assess correlations between heterozygosity and traits related to individual competitive ability [i.e., heterozygosity–fitness correlations (HFCs)] in Atlantic salmon, and (2) to evaluate the effect of the competitive rainbow trout on any such HFCs. We also tested whether a few loci had a disproportionately large effect (i.e., the local effect hypothesis) or, on the contrary, if all loci contributed equally (i.e., the global effect hypothesis) in explaining the observed HFCs. We found significant HFCs for phenotypic traits related to the competitive ability of juvenile Atlantic salmon, i.e., the growth rate and the distance to the feeding source. Some HFCs were nonlinear, suggesting that individuals with intermediate levels of heterozygosity were favored. In addition, we found that the competition exerted by rainbow trout only weakly modified these HFCs as the relationships were highly consistent across treatments. We demonstrated that the local-effect hypothesis best explained both linear and nonlinear HFCs. Overall, our results illustrated the importance of genetic diversity in explaining the behavioral variability observed within populations. Moreover, we provide evidence that, even if a competitive species can have strong ecological effects, the relationships between genetic diversity and fitness-related traits in juvenile Atlantic salmon were not influenced by such effects.  相似文献   

18.
Connectivity in benthic marine animals with complex life cycles occurs primarily during the pelagic larval stage and depends deterministically on oceanographic dynamics. The scale of such larval dispersal is highly uncertain due the difficulty of direct measurement and poor knowledge of larval dynamics and ocean flow variability. This study characterizes the pattern of genetic connectivity in the ecosystem engineer Perumytilus purpuratus between latitudes 23°S and 33°S, which includes the ecological discontinuity reported for many taxa north to 32°S at the southeast Pacific. The genetic discontinuity observed in P. purpuratus around 26°S is described herein while that detected at 28°S is in line with the ecological discontinuity (in coverage, recruitment and density) previously reported for this mussel between 28°S and 32°S. Both discontinuities delimitate two major gene pools upon Bayesian inferences on geographical variation of five microsatellite loci. Interestingly, marker Pepu1 was responsible for most variation between pools and was potentially under selection. In fact, inferences excluding Pepu1 produced a single gene pool (k = 1) in central-northern Chile. The IBD connectivity pattern observed among P. purpuratus beds distributed in the interval 23°S–33°S is congruent with processes driven by larval dynamics, and the dominant equatorward Humboldt Current along a coast largely unaffected by ice during the last Pleistocene glaciation. However, the selective scenario unveiled by microsatellite Pepu1 inside the 25°S–28°S ecological discontinuity is consistent with selective processes associated with specific mesoscale properties operating in this area. This study highlights the usefulness of integrating different oceanographic scales, ecological data and population genetics to better understand connectivity of benthic marine species.  相似文献   

19.
Following the introduction to a new area (pre-border dispersal), post-border processes determine the success in the establishment of non-indigenous species (NIS). However, little is known on how these post-border processes shape the genetic composition of NIS at regional scales. Here, we analyse genetic variation in introduced populations along impacted coastlines to infer demographic and kinship dynamics at the post-border stage. We used as a model system the ascidian species Microcosmus squamiger that has been introduced worldwide. This species can colonize and grow fast on man-made artificial structures, impacting activities such as mariculture. However, it can also establish itself on natural substrates, thus altering natural communities and becoming an ecological problem. We genotyped 302 individuals from eight populations established on natural and artificial substrates in the north-western Mediterranean Sea, using six microsatellite loci. We then compared the resulting genotypes with those found within the native range of the species. We found high levels of genetic diversity and allelic richness in all populations, with an overall deficit of heterozygotes. Autocorrelation analyses showed that there was no within-population genetic structure (at a scale of tens of metres); likewise, no significant differentiation in pairwise comparisons between populations (tens of kilometres apart) and no isolation-by-distance pattern was found. The results suggest that M. squamiger has a natural capacity for high dispersal from one patch of hard substrate to another and no differences whatsoever could be substantiated between natural and artificial substrates. Interestingly, two groups of genetically differentiated individuals were detected that were associated with the two ancestral source areas of the worldwide expansion of the species. Individual assignment tests showed the coexistence of individuals of these two clusters in all populations but with little interbreeding among them as the frequency of admixed individuals was only 15 %. The mechanism responsible for maintaining these genetic pools unmixed is unknown, but it does not appear to compromise post-border colonization of introduced populations.  相似文献   

20.
There is a growing awareness that cyclic population dynamics in vertebrate species are driven by a complex set of interactions rather than a single causal factor. While theory suggests that direct host-parasite interactions may destabilise population dynamics, the interaction between host and parasite may also influence population dynamics through indirect effects that result in delayed responses to either density or to life-history traits. Using empirical data on mountain hares (Lepus timidus) infected with a nematode parasite (Trichostrongylus retortaeformis), we developed an individual-based model (IBM) that incorporated direct effects and delayed life-history effects (DLHEs) of a macroparasite, alternative transmission mechanisms and seasonality in host population dynamics. The full model describes mean characteristics of observed mountain hare time series and parasite abundance, but by systematically removing model structure we dissect out dynamic influences of DLHEs. The DLHEs were weakly destabilising, increasing the propensity for cyclic dynamics and suggesting DLHEs could be important processes in host-parasite systems. Further, by modifying model structure we identify a strong influence of parasite transmission mechanism on host population stability, and discuss the implications for parasite aggregation mechanisms, host movement and natural geographical variation in host population dynamics. The effect of T. retortaeformis on mountain hares likely forms part of a complex set of interactions that lead to population cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号