首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Diurnal changes in abundance caused by vertical migrations have been examined in populations of copepods, ostracods, euphausiids, amphipods, decapods, chaetognaths, siphonophores and fish. The animals were taken in a series of hauls made over a 24 h period with an opening-closing midwater trawl system (RMT 1+8), consisting of a net of 1 m2 mouth area combined in the same frame as one of 8 m2 mouth area. The samples were taken at 250 m depth in a position 30°N; 23°W on 7/8 April 1972. The specific composition of the community and the numbers of individuals changed continuously with time. The numbers of fish, decapods and chaetognaths increased at night, but those of copepods, ostracods and euphausiids decreased. More species of fish, decapods and copepods were present by night than by day, whereas the numbers of species per haul for other groups remained fairly constant. The relative abundances of groups caught by the RMT 1 have been analysed, but similar treatment of the RMT 8 samples was impossible as only 3 groups were taken from this net. Non-migrants were a minority in every group except chaetognaths. Migrant species have been put into one of 6 transitory categories according to their patterns of abundance and hence migrations. Within each category, migratory behaviour varied both inter- and intraspecifically. The patterns of abundance of many species were smooth and continuous, suggesting slow migratory cycles of small amplitude. Conversely, extensive migrants had discontinuous patterns and presumably more rapid movements. Few migrants had a steady numerical plateau between their upward and downward migrations, and most apparently moved up or down continuously. The presence of migratory species in the sampled layer depended upon the time of day or night. It is concluded that, in a vertical series of hauls, the depths of occurrence of migrants will vary with the sampling time. Further-more, a vertical series will show a species minimum migration range but not necessarily its maximum. Individuals of some species were out of phase with the migrations of their main populations. There is evidence that the distributions and migrations of some species of decapods, euphausiids, copepods and fish could be related to the distribution of underwater light. Three pairs of congeneric copepod species were both spatially and temporally segregated for at least part of their diurnal cycles. Such an orderly arrangement could provide a means of reducing competition between species. Some species, however, overtook others on their migrations and the pattern of underwater light cannot, therefore, regulate the distribution of all species in the same way.  相似文献   

2.
3.
Pop-up satellite archival tags were deployed onto four wahoo during 2006 in the western North Atlantic (~26.5°N, 79.3°W), providing movement, depth, and temperature data collected over a total of 198?days. Straight-line distances between tag deployment and pop-off positions ranged from 162.5 to 1,960.0?km. Wahoo spent >90?% of their time in water <200?m, and >90?% of their time in water between 17.5 and 27.5?°C. Three fish made regular trips to depths >200?m. All four fish had significantly different depth distributions between the dark and light periods (Kruskal–Wallace test, p?相似文献   

4.
The feeding habits of pelagic, juvenile rockfishes (Sebastes spp.) collected off Oregon in 2002, and Oregon and Washington in 2006, were examined using stomach content and stable isotope analyses. Sampling occurred along a series of transects across the shelf between Crescent City, California (Lat. 41°54.0′), and Newport, Oregon (Lat. 44°39.0′), in 2002, and off Willapa Bay, Washington (Lat. 46°40.0′), and the Columbia River, Oregon (Lat. 46°10.0′), in 2006. Species composition varied both years with distance from shore, but the predominant species were darkblotched (Sebastes crameri), canary (S. pinniger), yellowtail (2006 only; S. flavidus), and widow (S. entomelas) rockfishes. Stomach content analysis revealed that darkblotched rockfish had highly variable diets, and canary, yellowtail, and widow rockfishes exhibited a high degree of overlap in 2006. Multivariate analysis showed significant differences in diet based on distance from shore where caught, fish size, and species. Stable isotope analysis indicated that all species were feeding at about the same trophic level within each year, with a 1.5 ‰ difference in δ15N between years and regions. The difference in δ15N values may indicate a greater contribution of mesotrophic zooplankton such as euphausiids, hyperiid amphipods, and chaetognaths to fish diets in 2006. Depleted 13C values were indicative of diets based on primary production from a more offshore origin, suggesting that these rockfish had previously inhabited offshore waters. These results add to our understanding of some of the important environmental factors that affect young-of-the-year rockfishes during their pelagic phase.  相似文献   

5.
Stomach contents were analysed from the 7 most numerous species of mesopelagic fish caught in a series of 11 hauls over a 24 h period at 230 to 266 m depth in the eastern North Atlantic Ocean. The numerical abundance of organisms per filled stomach and the frequency of occurrence of empty stomachs were used to indicate feeding periodicity. The ecological significance of the feeding periodicity was considered by examining it in connection with an investigation of the day-night vertical distribution of zooplankton and micronekton to 2000 m at the same station. Additional dietary evidence on the 7 species considered was also obtained from the vertical series. Feeding selectivity was examined by comparing the composition of the zooplankton population, sampled separately but simultaneously with the micronekton, with that from the overall stomach contents of the species examined. Feeding periodicity was demonstrated for 6 species, of which 3 were found to be feeding selectively: Valenciennellus tripunctulatus on calanoid copepods, Argyropelecus aculeatus on ostracods, and Lampanyctus cuprarius on amphipods and possibly euphausiids. The limited data available on the other 3 species suggested that they were either random feeders (A. hemigymnus and Lobianchia dofleini) or perhaps selecting against a particular group (Notolychnus valdiviae). No indication of feeding periodicity or selectivity was found for Chauliodus danae. The overall pattern of results confirmed the supposed close correlation between vertical migration and feeding in mesopelagic fish.  相似文献   

6.
Between March 23 and April 4, 1981, samples were taken in the eastern tropical Pacific. The day/night vertical distribution of euphausiid species and biomass are described and contrasted in detail on two eastern tropical Pacific stations, the DOME station, in a region of continuous upwelling and the BIOSTAT station, in a nonupwelling area. The effects of various biological parameters, such as temperature, salinity and oxygen concentrations on the distributions of the species are examined. The numbers of euphausiids m-2 on both stations were highest during the day, indicating that avoidance of the sampler was not a problem. During the day the largest concentration of adult euphausiids was between 300 and 350 m whereas the juveniles were concentrated between 170 and 80 m on both stations. Very few individuals were found within the oxygen minimum layer, but low concentrations of some species were found below the oxygen minimum down to 1 000 m. At night the euphausiid concentration migrated upward into the mixed layer (20 to 30 m) at BIOSTAT and to the base of the mixed layer at the DOME. Significant differences in the night depths of the species were found on both stations. The oxygen minimum layer appeared to act as a barrier to the vertical distribution of all species. Only two species were found in water with an oxygen concentration of <0.1 ml O2 l-1. Twentyone species of euphausiids were found on the two stations but the adult population was dominated by only two or three species on both stations. The reproductive state of the species suggested that some species reproduced earlier on the DOME than on BIOSTAT. Analysis of the depth distribution by cluster analysis showed that the most abundant species occupied different depths during the night and day at BIOSTAT but the two most abundant species were concentrated at the same depth at the DOME station although portions of each species population occupied different pelagic zones.  相似文献   

7.
C. Roger 《Marine Biology》1973,19(1):54-60
The predation of euphausiids by micronektonic migrant or deep-living fishes has been studied by examination of 1825 stomach contents selected from 282 samples collected with a 10-foot Isaacs-Kidd midwater trawl (IKMT) in the central equatorial Pacific Ocean. On the whole, euphausiids account for 8% of the total food ingested; this percentage rises to 21% when the genus Cyclothone is excepted. The species consumed belong to the genera Euphausia (45%), Stylocheiron (40%) and Nematoscelis (13%). 90% of the specimens are smaller than 18 mm and weigh less than 37 mg (wet weight); in most cases, there exists an almost linear relationship between predator size and the occurrence of euphausiids in the stomachs and also with the sizes of the preys. It is shown that the predation of euphausiids by micronektonic migrant and deep-living fishes is less during light hours and rises in the late afternoon and night time. Moreover, the species consumed are not the same at different times of the day; Euphausia spp. are ingested by night (in subsurface layers) as well as during the daytime (in deeper layers), small Stylocheiron mainly by night in subsurface layers, Nematoscelis spp. and Stylocheiron abbreviatum chiefly at the time of vertical migrations (sunset and sunrise).  相似文献   

8.
Previous studies have found strong evidences for Atlantic cod (Gadus morhua) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66–71°N/10–25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.  相似文献   

9.
Biology of euphausiids in the subarctic waters north of Iceland   总被引:2,自引:0,他引:2  
The seasonal abundance, maturity, spawning, and population dynamics of Thysanoessa inermis (Krøyer, 1846), T. longicaudata (Krøyer, 1846), and Meganyctiphanes norvegica (M. Sars, 1857) were studied in the subarctic waters north of Iceland from February 1993 to February 1994. The material was sampled at approximately monthly intervals along a transect of eight stations extending from 66°16′ to 68°00′N at 18°50′W. Information on temperature and chlorophyll a concentrations is also presented. Spring warming of the water began in March to April and maximum temperatures were recorded in August (3.8?°C). The spring bloom of the phytoplankton started in late March and highest chlorophyll a concentrations were measured during middle to late April (7.0?mg chlorophyll a m?3). T. inermis was the dominant species in the samples, constituting 77% of juvenile, male and female euphausiids present. The greatest abundance of juvenile, male and female T. inermis and M. norvegica was observed during autumn and winter, with lower abundance in spring and summer. T. longicaudata showed only limited changes in seasonal abundance. Male T. inermis had spermatophores in their ejaculatory ducts from February to May, while mature females had spermatophores attached during April and May. T. longicaudata males bore spermatophores from February to July, whereas females only bore spermatophores in April and May. M. norvegica males had spermatophores from February to April, while the single female with spermatophores was caught in February. Euphausiid eggs were first recorded during the latter part of April; the highest numbers of eggs were observed in the samples taken in late May. Maximum numbers of nauplii of both Thysanoessa spp. and M. norvegica were recorded in late May. The main spawning of the euphausiids coincided with the phytoplankton spring bloom. Most male T. inermis took part in breeding at 1 yr of age while most females appeared not to mature until 2 yr of age. T. inermis has a life span of just over 2 yr, T. longicaudata appears to live just over 1 yr. Limited data did not allow the life span of M. norvegica to be determined.  相似文献   

10.
S. Imsand 《Marine Biology》1981,63(1):87-100
Prey (chiefly euphausiids and copepods) eaten by two myctophids (lanternfishes) are compared from incidence in fish stomachs and from abundance in the environment. One lanternfish species, Triphoturus mexicanus, lives in the California Current, and the other, T. nigrescens, lives in the central Pacific Ocean. Although these two environments are very different physically and biologically, the feeding habits of the two lanternfishes are surprisingly similar. Prey biomass is 94% euphausiids, 3% copepods, and 3% other organisms for T. mexicanus and 88% euphausiids, 4.5% copepods, and 7.5% other organisms for T. nigrescens; the difference between the fish species is not significant when tested statistically. The two fishes resemble one another in frequency distributions of ingested copepod individuals, copepod species, euphausiid individuals, and euphausiid species. During a single diurnal feeding period, both fishes eat a variety of copepod species but tend to eat only a single species of euphausiid. T. mexicanus grows to twice the length of T. nigrescens and eats proportionally larger euphausiids; however, both fishes eat copepods having the same median size. The frequencies of euphausiid species in the diets of both fishes differ from the frequencies in the environment. The chief differences between the feeding habits of the two lanternfishes are that T. nigrescens, in comparison to its congener, eats a greater variety of organisms during one diurnal feeding period and captures smaller euphausiids. The feeding patterns for each lanternfish species are consistent over distances of hundreds of kilometers and over many years of sampling.  相似文献   

11.
The northern range limit of the intertidal limpet Lottia scabra is Cape Arago, Oregon (43°N), where adult survival is excellent, the population is small (<300), and recruitment is low; the range limit may be set by limited recruitment. Between June 2012 and March 2013, 25 sites from the middle of the species range (33°N) to Cape Arago were sampled and population size frequency distributions, densities, and nearest neighbor distances were compared to the amount of rocky and sandy shore and kelp bed size. North and south of 37°N, the densities of new recruits averaged 22 and 86 m?2, respectively. This shift was associated with the range limit of Macrocystis pyrifera kelp beds; we hypothesize that slower currents in M. pyrifera beds may limit larval dispersal leading to higher recruitment. North and south of 40°N, adult density averaged <1 and 458 m?2, respectively, with the species absent from many sites to the north. This shift was associated with a sharp drop in the amount of rocky shoreline and an increase in uninhabitable sandy shore. Near the northern range limit, >80 % of the individuals were solitary and may be unable to spawn successfully. Recruitment at Cape Arago was infrequent and likely due to self-recruitment. This study suggests that the range limit was set by the absence of M. pyrifera and too little rocky shore leading to high larval wastage, low settlement, low population densities, and, due to an Allee effect, very small effective population sizes.  相似文献   

12.
A simple system of shadow cinematography, consisting of a small tungsten halogen lamp, 2 large biconvex lenses and a 16 mm camera, is described for recording the swimming and feeding behaviour of larval fish. The system can be used either with infra-red film to record swimming behaviour independently of ambient light intensity, or with high-resolution film to record food organisms and feeding behaviour. Small plankton organisms of 0.2 mm width can be resolved using high-resolution film. The technique has been used to record the behaviour of plaice larvae (Pleuronectes platessa L.) feeding on the nauplii of Artemia salina L. The perceptive field of the larvae extends to approximately ±60° in azimuth, ±40° in elevation and 1.5 body lengths in range.  相似文献   

13.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies.  相似文献   

14.
Sea urchins are a key group of herbivores in both temperate and tropical food webs because they control macroalgal cover, and consequently influence primary productivity and phase shifts on reefs. Despite being abundant on southwestern Atlantic reefs, sea urchin distributions, and their association with abiotic and biotic variables, are poorly known. In this study, sea urchin assemblages were surveyed in 2011 at multiple depths at eight sites in Arraial do Cabo (Brazil, 22°57′S/41°01′W), with sites split between a colder, more wave-exposed location, and a warmer, more sheltered location. The influence of this large-scale physical gradient, along with changes in depth and substrate complexity, on sea urchin densities was then investigated. Predator biomass was low and did not vary significantly among sites. Among the seven species recorded, Paracentrotus gaimardi, Echinometra lucunter and Arbacia lixula were dominant. Linear mixed-effects models indicated that location was important, with mid-sized P. gaimardi individuals and A. lixula more common at cooler, exposed sites and E. lucunter more abundant at warmer, sheltered sites. Sea urchin densities typically decreased with increasing depth, probably caused by changes in factors such as light, wave exposure, and sedimentation. Substrate complexity had a positive effect on the abundance of all species, presumably because of the increased availability of refuges. Physical gradients have important consequences for urchin distributions and their ecological functions at relatively small spatial scales on these reefs, and should be incorporated into herbivore monitoring programmes. Research is also required to examine how differential sea urchin distributions affect benthic dynamics.  相似文献   

15.
Sixty-eight yellowfin tuna, Thunnus albacares, (60-135 cm fork length) were caught and released with implanted archival tags offshore off Baja California, Mexico, during October 2002 and October 2003. Thirty-six fish (53%) were recaptured and the data were downloaded from all 36 recovered tags. Time at liberty ranged from 9 to 1,161 days, and the data were analyzed for the 20 fish that were at liberty for 154 or more days. The accuracy in the position estimates, derived from light-level longitude data and sea-surface temperatures (SSTs) based latitude, is about 0.41° in longitude and 0.82° in latitude, in this region. The movement paths, derived from position estimates, for the 20 yellowfin indicated that 19 (95%) remained within 1,445 km of their release locations. The estimated mean velocity along movement paths was 77 km/day. The southern and northern seasonal movement paths observed for yellowfin off Baja California are influenced by the seasonal movements of the 18°C SST isotherm. Cyclical movements to and from suitable spawning habitat (≥24°C SST) was observed only for mature fish. For the 12 fish that demonstrated site fidelity, the mean 95 and 50% utilization distributions were 258,730 km2 and 41,260 km2, respectively. Evaluations of the timed depth records resulted in discrimination of four distinct behaviors. When exhibiting type-1 diving behavior (78.1% of all days at liberty) the fish remained at depths less than 50 m at night and did not dive to depths greater than about 100 m during the day. Type-2 diving behavior (21.2% of all days at liberty) was characterized by ten or more dives in excess of 150 m during the day. Type-2 diving behavior is apparently a foraging strategy for fish targeting prey organisms of the deep-scattering layer during the day, following nighttime foraging within the mixed layer on the same prey. Yellowfin tuna exhibited occasional deep-diving behavior, and some dives exceeded 1,000 m, where ambient temperatures were less than 5°C. Surface-oriented behavior, defined as the time fish remained at depths less than 10 m for more than 10 min, were evaluated. The mean number and duration of surface-oriented events per day for all fish was 14.3 and 28.5 min, respectively. Habitat utilization of yellowfin, presented as monthly composite horizontal and vertical distributions, indicates confined geographical distributions, apparently resulting from an affinity to an area of high prey availability. The vertical distributions indicate greater daytime depths in relation to a seasonally deeper mixed layer and a greater proportion of daytime at shallower depths in relation to a seasonally shallower mixed layer.  相似文献   

16.
Diel vertical migration (DVM) is a common behavior adopted by zooplankton species. DVM is a prominent adaptation for avoiding visual predation during daylight hours and still being able to feed on surface phytoplankton blooms during night. Here, we report on a DVM study using a Video Plankton Recorder (VPR), a tool that allows mapping of vertical zooplankton distributions with a far greater spatial resolution than conventional zooplankton nets. The study took place over a full day–night cycle in Disko Bay, Greenland, during the peak of the phytoplankton spring bloom. The sampling revealed a large abundance of copepods performing DVM (up during night and down during day). Migration behavior was expressed differently among the abundant groups with either a strong DVM (euphausiids), an absence of DVM (i.e., permanently deep; ostracods) or a marked DVM, driven by strong surface avoidance during the day and more variable depth preferences at night (Calanus spp.). The precise individual depth position provided by the VPR allowed us to conclude that the escape from surface waters during daytime reduces feeding opportunities but also lowers the risk of predation (by reducing the light exposure) and thereby is likely to influence both state (hunger, weight and stage) and survival. The results suggest that the copepods select day and night time habitats with similar light levels (~10?9 μmol photon s?1 m?2). Furthermore, Calanus spp. displayed state-dependent behavior, with DVM most apparent for smaller individuals, and a deeper residence depth for the larger individuals.  相似文献   

17.
The influence of light and temperature on photosynthetic rate as measured by C14O2-fixation of marine benthic diatoms was investigated, using both intact sediment samples (Marshall et al., 1973) and suspensions of diatoms harvested by a lenstissue technique (Eaton and Moss, 1966). After C14-incubation, sediment samples were filtered, burned in a sample oxidizer, and their activity determined in a liquid scintillation counter. Photosynthetic rate of mixed field populations is saturated by a light intensity of approximately 10,000 lux; at still higher light intensities no photoinhibition was found. In contrast to the mixed field populations, unialgal cultures of the benthic diatom Amphiprora alata Kütz. exhibited strong photoinhibition at higher light intensities (10,000 to 60,000 lux). Within a range of 4° to 20°C, the photosynthetic rate increased about 10%/Co. No differences in photosynthetic pattern were observed between epipelic and epipsammic species.  相似文献   

18.
Comparative use of shelter use by three sympatric species of combtooth blenny (Ecsenius stictus, Glyptoparus delicatulus, and Salarias patzneri) was studied among micro-atolls in the lagoon at Lizard Island (14°42′S, 145°30′E), northern Great Barrier Reef, Australia. Blenny species used different sized holes; however, the average diameter and depth of holes used by the smallest and largest species differed by only 4 and 25 mm, respectively, indicating interspecific differences in suitable refuge can be very subtle. Both hole diameter and depth were positively related to total length of fish, suggesting use of holes relates to interspecific differences in body size. Total abundance of blennies was best explained by a general linear model that included either the number of holes or total habitat area on individual micro-atolls, predictor variables that were positively correlated with each other. However, the relative importance of variables differed among the three species, feeding area being most important for S. patzneri, feeding area and number of holes for E. stictus, and variance in hole diameter being the best explanatory variable for G. delicatulus abundance. The number of blenny species on a micro-atoll was best explained by variance in hole diameter, emphasizing the influence of refuge size variety in fish diversity. It is likely that subtle habitat partitioning, which relates to interspecific differences in body size, contributes to the co-existence of blenny species within the same microhabitat, but presence of holes is unlikely to regulate abundance of these fish.  相似文献   

19.
This study reports the vertical distribution of fish larvae during the 1999 summer upwelling season in the Canaries-African Coastal Transition Zone (the Canaries-ACTZ). The transition between the African coastal upwelling and the typical subtropical offshore conditions is a region of intense mesoscale activity that supports a larval fish population dominated by African neritic species. During the study, the thermal stratification extended almost to the surface everywhere, and the surface mixed layer was typically shallow or non-existent. Upwelling occurred on the African shelf in a limited coastal sub-area of our sampling. The vertical distributions of the entire larval fish population, as well as of individual species, were independent of the seasonal thermocline. Fish larvae and mesozooplankton were concentrated at intermediate depths regardless of the thermocline position, probably because of its weak signature and spatial and temporal variability. Day/night vertical distributions suggest that some species did not perform diel vertical migration (DVM), whereas others showed either type I DVM or type II DVM. The opposing DVM patterns of different species compensate for each other resulting in no net DVM for the larval fish population as a whole.  相似文献   

20.
Winter mortality has been hypothesized to select for large body size in young-of-the-year (YOY) fishes, yet substantiation of winter mortality and its cause(s) are available for few estuarine or marine species. We examined seasonal length distributions of wild populations of four common marine species, black sea bass (Centropristis striata), tautog (Tautoga onitis), cunner (Tautogolabrus adspersus), and smallmouth flounder (Etropus microstomus), and mortality (i.e., frequency of death), growth, and behavior of their YOY in the laboratory at ambient winter temperatures (mean 7°C, range 2-13°C) during a 135-day period (December 1992 through mid-April 1993) to establish potential causes of their mortality in the field. Young-of-the-year black sea bass experienced 100% mortality when water temperatures decreased to 2-3°C in February, emphasizing the importance of winter emigration from estuaries in this southern species. The low mortality of two labrid species, YOY tautog (14%) and YOY cunner (3%), was consistent with their northern distribution and year-round occurrence in estuarine and nearshore coastal waters. Laboratory mortality of YOY smallmouth flounder (33%) was higher for small (<35 mm total length) fish, suggesting that this small species may experience high winter mortality in estuaries and nearshore coastal waters. Seasonal differences in fish length result potentially from several mechanisms (e.g., mortality and/or migration) that are difficult to assess, but our laboratory experiments suggest that seasonal temperature changes cause size-specific mortality of YOY smallmouth flounder and offshore migration of YOY black sea bass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号