首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
The distribution of cadmium within captive crabs (Cancer pagurus) exposed experimentally to cadmium-contaminated food and water is described and illustrated by triangular diagrams. Crabs from the Orkney Islands (Scotland) are known to contain relatively high levels of cadmium (up to 62 g g-1 wet wt) in the hepatopancreas. The distribution of cadmium between the hepatopancreas, gonad, gill, carapace, claw muscle, heart, and haemolymph, is described in crabs collected during 1978, and compared with similar data from crabs exposed to cadmium for ca. 300 d (September 1978 – June 1979) experimentally. It is concluded that the dominant uptake route of cadmium to Orkney crabs is through their diet.  相似文献   

2.
The accumulation of arsenate from seawater by the shore crab Carcinus maenas L. (collected from Odense Fjord, Denmark in 1991 and from Restronguet Creek, UK in 1991) was investigated in a series of laboratory experiments. A field study was also carried out to determine the effects of raised environmental arsenic concentrations on intra-organismal distribution and tissue concentrations. Studies on the influence of nutritional state and sex on accumulation of As(5) from seawater indicated that most of the arsenic taken up from seawater in laboratory experiments was retained in the gills and the midgut gland. Arsenic accumulation exhibited sex-dependent differences which were also evident in correlation analyses carried out between total lipid contents and total arsenic contents of midgut glands of individual crabs. Arsenic concentrations in the gonads of both sexes were strongly influenced by the nutritional state of the crabs. Elevated arsenic concentrations in seawater and food at an arsenic polluted site (Restronguet Creek) significantly influenced arsenic concentrations and distribution among the tissues of C. maenas. Arsenic concentrations and distribution patterns differed markedly from those crabs from an unpolluted site in Odense Fjord. The gills of the crabs from Restronguet Creek contained extremely high arsenic concentrations ranging from 179 to 483 g As g-1 dry wt. These values were even higher than those measured in the gills of Odense crabs that had been exposed to 3 mgl-1 As(5) for 2 wk in the laboratory. Arsenic concentrations in the exoskeleton of Odense Fjord crabs were 15 times lower than those measured in exoskeletons of Restronguet Creek crabs. Approximately 69% of the total body burden of arsenic was located in muscle tissue of crabs from Odense Fjord, whereas the major pool of arsenic (46%) in Restronguet Creek crabs was located in the exoskeleton.  相似文献   

3.
Juvenile lesser blue crabs, Callinectes similis Williams, were exposed to a range of salinities for measurement of survival and bioenergetics. Effects of salinity on survival were determined by exposing juvenile crabs to salinity treatments ranging from 0 to 74‰. All crabs survived 21 d of exposure to 5 and 45‰S. The 21 d LC50 values for salinity tolerance (calculated from survival data) were 2.6 and 60.8‰S at low and high salinities, respectively. Energy-budget components and scope for growth were determined for crabs exposed to 2.5, 10, 25, 35 and 50‰S. Energetic absorption rates were highest at 2.5 and 35‰S. Energetic expenditure rates (energy lost to respiration and excretion) were greatest at 2.5‰S, and decreased as salinity increased. Respiration constituted the majority of energetic expenditure at all salinities (92.3% average). Scope for growth was significantly affected by salinity and was highest in crabs exposed to 35‰S. Increased respiration at low salinity may indicate that C. similis incurs greater costs due to osmoregulation. The results of this study indicate that C. similis is capable of surviving and growing in waters with salinities as low as 10‰. Received: 10 January 1997 / Accepted: 11 February 1997  相似文献   

4.
Regurgitated food samples were collected from 18 species of seabirds on 8 of the Northwestern Hawaiian Islands between February 1978 and February 1981. Sea-skaters (Halobates sericeus) was found in the diets of 9 species, but can be considered to be an important food item for only 4 species: the blue-gray noddy Procelsterna cerulea; the Bonin petrel Pterodroma hypoleuca; the gray-backed tern Sterna lunata; and Bulwer's petrel, Bulweria bulwerii. The blue-gray noddy, by far the most important avian predator of Halobates spp., may at times feed exclusively on this food item and may appreciably reduce the populations of sea-skaters within their foraging territories.  相似文献   

5.
The crab Carcinus maenas (L.) was exposed to radioactively labelled cadmium dissolved in seawater at concentrations of 0.1, 1 and 10 ppm, the latter concentration being toxic to the crabs (50% mortality after 12.3 days). Net accumulation of cadmium from solution was proportional to the level and time period of cadmium exposure. Total absorbed cadmium levels reached 0.0043 and 0.0412 mg Cd g-1 dry weight after 40 days exposure to 0.1 and 1 ppm Cd, respectively, and 0.1115 mg Cd g-1 dry weight after 12.3 days average exposure to 10 ppm Cd. The highest tissue concentration was found in the midgut gland, reaching 0.786 mg Cd g-1 dry weight after 12.3 days average exposure to 10 ppm Cd. The midgut gland only contained about 10% of the total cadmium absorbed from solution, while the exoskeleton contained the bulk of obsorbed cadmium (59 to 80%) probably passively adsorbed onto the surface. When cadmium was absorbed by the crabs from a food source, the midgut gland contained 16.9% of the total absorbed cadmium whereas the exoskeleton now contained only 22.2%. Ten percent of the cadmium available in the food source (Artemia salina) was accumulated by the crabs. When placed in cadmium-free seawater, crabs that had accumulated cadmium from solution lost 69% of the absorbed cadmium in 10 days, mostly from the exoskeleton which lost 78% of its original absorbed cadmium concentration.  相似文献   

6.
From May 1977 to February 1979, the use of sponges and ascidians by Cryptodromia hilgendorfi was studied in Moreton Bay, Queensland, Australia. The aim was to investigate patterns of seasonal use, cap making behaviour, cap turnover, the effect of intraspecific interactions on cap life and the effect of movement of crabs between hosts on background matching. C. hilgendorfi uses 12 (of 16 available) species of sponge and 3 species of ascidians to construct caps, which are carried by the crabs using their last two pairs of legs. Cap area increases non-linearly with crab size, and caps are normally two to three times as large as the crabs. Cap making behaviour is described. It occurs during intermoult periods, with females making most of their caps at night. Caps decrease in size with time, but conceal the crabs which commonly occupy exposed sites on sponges. Cap life is independent of crab size, differs between different cap species and is influenced by the presence of other crabs who can dislodge caps through aggressive behaviour. Caps are made from the sponge Suberites carnosus more often than from other available sponges. S. carnosus caps also decay less rapidly than caps made from other sponges. Use of sponge and ascidian species varies seasonally, with Halichondria sp. and S. carnosus being used in all months. C. hilgendorfi exhibits a preference for certain sponges. The majority of crabs carried caps which matched their host sponge or ascidian, but mis-matches varied seasonally with a winter peak following the breeding season. Young C. hilgendorfi settle only on S. carnosus sponges and disperse from this host to other species in the environment. Males and females differ in their rate of discovery of new hosts. Males, despite their greater mobility, find new hosts slower than females. It is hypothesized that males occupy “home ranges” which females do not. Crabs frequently move between sponges, mostly at night. Sponges and ascidian species grow in intimate association with each other, and sponge crabs act a selective asexual propagation mechanism. Depending upon the nature of the interactions between sponge and ascidian species (co-operative or competitive) and whether competitive hierarchies or networks are involved, the sponge crabs may have either stabilizing or destabilizing effects on the sponge community.  相似文献   

7.
The biological effects of a naturally occurring perturbation were compared with one which may be induced by man's activities in the coastal zone. The estuarine shrimp Palaemonetes pugio was exposed for 32 d to fluctuating (18°–22°C) temperatures (FT) and/or 2,6-dimethylnaphthalene (DMN)-contaminated food at a concentration of 0.24 g DMN g-1 wt food. After exposure, relative survival rates were evaluated in a matrix of environmental challenge tests. Low salinity (2 S) had little overall effect on survival. Survival at elevated temperatures (33°C) was significantly lower than in reduced salinity and was independent of the treatment effects. Resistance to the challenge of hypoxia+reduced salinity, however, in contrast to the other tests, was significantly reduced by exposure to FT and DMN-contaminated food. The influence of FT was much stronger and obscured the effects of DMN-contaminated food when shrimp were exposed to both perturbations at the same time. The persistent, residual effects of FT and DMN-contaminated food on the survival of P. pugio during exposure to hypoxia were evaluated after a 16-d recovery period with stable temperatures and uncontaminated food. The initial deleterious effects of FT appeared to be ameliorated by the stable temperatures. On the other hand, shrimp which had ingested DMN-contaminated food, prior to the clean food, exhibited enhanced survival during exposure to hypoxia. After ingesting contaminated food for 32 d, P. pugio contained concentrations of DMN approximately 1 order of magnitude greater than that in the food. Shrimp kept in FT generally had higher concentrations of DMN than shrimp held in stable temperatures. Feeding uncontaminated food to contaminated shrimp for 16 d resulted in a significant reduction of DMN in the tissues.Virginia Institute of Marine Science Contribution No. 983  相似文献   

8.
 The effects of cadmium exposure and dietary status on cadmium accumulation, fatty acid (FA) content and profiles were investigated in two colour forms of the shore crab Carcinus maenas. Groups of shore crabs were either starved or fed with blue mussels, Mytilus edulis, during a 40 d exposure period to 2 or 6 μM Cd2+ (as CdCl2). Starved green individuals accumulated more cadmium in haemolymph and hepatopancreas than did red crabs and green crabs fed during the experiments. In the red colour form, no difference in cadmium accumulation was observed between starved and fed individuals. In both colour forms, hepatopancreas contained more FA than gills and muscle. The FAs often present in the largest amounts in the tissues were 16:0, 16:1ω7, 18:1ω7, 18:1ω9, 20:4ω6, 20:5ω3 and 22:6ω3. However, saturated (SAFA) and mono-unsaturated fatty acids (MUFAs) were dominant in hepatopancreas, whereas poly-unsaturated fatty acids (PUFAs) were dominant in gills and muscles. At the beginning of the experiment, the total FA content in the hepatopancreas was 111.6 mg g−1 (dry weight) for red crabs and 78.4 mg g−1 for green shore crabs. During the experiment, however, the FA content decreased in red crabs. This decrease was more pronounced for starved individuals than for fed individuals. Also, the decrease in FA content was more pronounced in crabs exposed to 6 μM cadmium compared to crabs exposed to 2 μM or crabs not exposed to cadmium. No change in FA content was observed in green shore crabs, irrespective of diet and cadmium exposure. For both colour forms, no change in FA content was observed for gills and muscle. In red crabs, a decrease was observed for all FAs in the hepatopancreas. This decrease, however, was more pronounced for SAFAs and MUFAs than for PUFAs, indicating that the metabolism of FAs during starvation and cadmium exposure is selective. The experiments indicate that green colour forms of shore crabs are more tolerant of natural stress such as starvation and anthropogenic stress, e.g. cadmium exposure, than are red colour forms of shore crabs. Received: 23 September 1999 / Accepted: 29 April 2000  相似文献   

9.
The difference between the cadmium uptake via food and seawater in Mytilus edulis has been studied. This was done by labelling algae with Cd-109 and seawater with Cd-115m. Mussels were fed on six different quantities of Isochrysis galbana. Cadmium uptake via algae was more efficient at low food levels, while accumulation from seawater was linearly correlated with food quantities. Cadmium from food contributed only little to the body burden (0.2–0.5%). Half-lives for the elimination of cadmium ranged from 96–190 d and increased with decreasing availability of algae, presumably due to slowed down metabolism. Differences in elimination patterns suggest a release of both isotopes from different storage depots. A computer model shows that the food pathway can only play a significant role if algae are highly contaminated. It also demonstrates the paradox that in long-term studies the highest contribution of food-derived cadmium to the body burden must be expected near maintenance food concentrations.  相似文献   

10.
Two ill-explored hypotheses might explain host castration by parasitic pea crabs. The ‘energy drain’ hypothesis states that castration is caused by host-derived nutrient consumption of parasites that ultimately diminishes host-energy intake. The ‘steric interference’ hypothesis states that castration occurs when parasites physically inhibit host reproduction. This study evaluated whether Calyptraeotheres garthi, a pea crab from the southwestern Atlantic, is a parasitic castrator and explored whether the two hypotheses above explain castration in the limpet Crepidula cachimilla. None of three studied limpet species brooded embryos during the reproductive season when infested by mature female pea crabs. Also, limpets of C. cachimilla infested by C. garthi did not reproduce during a 90-day experimental period while crab-free limpets did spawn embryos during this period. Limpets resumed reproduction soon after pea crabs were experimentally removed from their brooding chamber. Thus, C. garthi does castrate limpets, and castration is reversible. Pea crabs ‘steal’ food from limpets, and infested limpets did not modify their feeding behavior to counteract nutrient loss. Thus, infested limpets are expected to ingest less food which provides partial support for the ‘energy drain’ hypothesis. However, the limpet’s body condition increased or was not affected by pea crabs during the breeding season which argues against the same hypothesis. Furthermore, that limpets promptly recovered reproductive activity once pea crabs were experimentally removed, that castration was not induced by the smallest pea crabs in the population (that fill only partially the brooding chamber), and that parasitized limpets did exhibit fully mature ovaries, support the ‘steric interference’ hypothesis explaining parasitic castration.  相似文献   

11.
The radiotracer vanadium-48 was used to examine accumulation, assimilation, tissue distribution and elimination of vanadium in the benthic fish Gobius minutus (Pallas). After 3 wk exposure to 48V in sea water, mean whole-body concentration factors were low (0.8). The tissue distribution of 48V indicated that 48V accumulated from water penetrates little into internal tissues, muscle or liver, and is preferentially fixed in tissues in direct contact with the sea water. Concentrations of stable vanadium in fishes collected during summer 1988 from the littoral zone near Monaco displayed the same trends. Vanadium accumulated directly from water is rapidly lost, as evidenced by a 19 d biological half-life of 48V. Likewise, assimilation of vanadium through the food-chain is low; only 2 to 3% of 48V ingested with prey is retained in the tissues of the goby. The results suggest that the relatively low vanadium toxicity observed in benthic fish by other investigators is a consequence of the low degree of uptake of this metal from food or water. The relative importance of uptake from food and from water to the vanadium levels in benthic fish is discussed in the light of the 48V distribution recorded in experimental individuals and the distribution of stable vanadium in similar samples from the natural environment.  相似文献   

12.
Stomach contents from 809 king crabs, Paralithodes camtschatica (Tilesius), from 6 areas near Kodiak Island, Alaska, and 9 sampling periods (1978–1979) were exammed quantitatively; 713 (88%) contained food. Mollusca (mainly the bivalves Nuculana spp., Nucula tenuis, and Macoma spp.) and Crustacea (mainly barnacles) were the dominant food groups in terms of percentage wet weight and frequency of occurrence; fishes were the next most important group of prey. No significant differences in feeding between sexes occurred; however, significant differences were apparent in the quantity of food consumed from different sampling periods, areas, depths, size groups, and crab molt-classes. Consumption was greater in spring and summer and in offshore locations at depths of 126 to 150 m. In addition, king crabs <140 mm carapace length (CL) consumed more food than crabs 140 mm CL. Adult, newshell (individuals that molted during the last molting period) females greater than 95 mm CL, and newshell males greater than 100 mm CL, each contained more food than did juvenile, newshell females <120 mm CL.Contribution No. 449, Institute of Marine Science, University of Alaska, Fairbanks, Alaska 99701, USA  相似文献   

13.
Droving is conspicuous in Uca vocans vocans in summer. The crabs burrowing on the upper habitat have a higher tendency to wander compared to the ones burrowing on the lower habitat. Most of the wandering crabs captured on the low tide levels are relatively large and male. Larger crabs and males prefer to burrow on the upper zones of U. vocans habitat, but the smaller ones and females prefer the lower habitat. The upper level of the U. vocans habitat has relatively low N-content compared to the water's edge. Therefore droving is advantageous in crabs that have burrows on the upper level. Female and smaller resident crabs have faster feeding motions than male and larger ones, and can satisfy their feeding demands more rapidly. Therefore, for males and larger crabs it is advantageous to move away from the burrow area and forage in areas of higher food content near the low tide level where the number of feeding motions increases.  相似文献   

14.
The behaviour of 16 adult (8 male and 8 female) spanner crabs (Ranina ranina), collected off southern Queensland, Australia, was monitored continuously in captivity by closed-circuit television for fifteen months from September 1982. Spanner crabs spent most of the time buried in the substrate, emerging mainly only when food became available. They remained emerged for twice as long on feeding days as on days without food. Females responded significantly faster than males to the presence of food. Response was slowest in October and November. There was no correlation between temperature and response time. The average feeding time was 2.0 min (SE=0.12), with no significant difference between males and females. Crabs without food were aggressive towards crabs with food, which sometimes led to fighting and wounding. These interactions also could result in food being transferred from one individual to another. When males interacted, food was transferred more often than when either females, or males and females interacted. Around moulting, male crabs did not feed for 52 d (SE=9.0) and females for 22 d (SE=2.2). This habit would reduce the frequency with which newly moulted crabs are caught in the baited tangle nets used by commercial fishermen. In mating interactions, copulation was always initiated by the males. Males dug up other crabs but, apparently unable to distinguish the sex of these individuals, attempted copulation with either sex. The majority of copulations occurred between midday and midnight and in the period August to December. The frequency of copulations with a female increased 10 d before she extruded eggs, after which it dropped to zero for the following 41 to 50 d. Eggs were carried for 39 to 44 d in the period September to November. The females remained emerged for long periods before extruding their eggs, but the period shortened immediately afterwards. This behaviour would lead to low catchability of ovigerous females. Because females respond more rapidly than males to a food stimulus, they may be more catchable in baited nets than are males. It is concluded that seasonal changes in the behaviour of spanner crabs could affect the number caught by baited tangle nets and may influence the sex ratio in catches.  相似文献   

15.
 The influence of moulting and ovarian maturation on cadmium accumulation in the tissues of female shore crabs Carcinus maenas exposed to 1 mg Cd l−1 in the water was investigated. Cadmium accumulation in all tissues examined was markedly increased in crabs in the postmoult stages (A and B) compared to crabs in all other moult stages. During the moult cycle, average cadmium accumulation in the midgut gland ranged from 29 μg Cd g−1 dw at premoult stage (D2) to 589 μg Cd g−1 dw at postmoult stage (A). Average cadmium concentrations in the haemolymph ranged from 0.56 μg Cd ml−1 at intermoult stage (C4) to 4.6 μg Cd ml−1 at postmoult stage (A), while the gills accumulated from 103 μg Cd g−1 dw in intermoult stage (C3) to 352 μg Cd g−1 dw in postmoult stage (A). Cadmium concentration in gills and haemolymph was also significantly higher in crabs in late premoult stage (D3) compared to C4-crabs, while midgut gland cadmium concentration remained elevated in C1- and C3- intermoult stages relative to C4. During ovarian maturation the cadmium accumulation in midgut gland, gills, ovaries and haemolymph decreased. Average cadmium concentration in the midgut gland decreased from 63 μg g−1 dw in ovarian Stage I to 19 μg g−1 dw in ovarian Stage VI. The same pattern was observed for gills, haemolymph and ovaries. The present study demonstrates that cadmium accumulation in the female shore crab strongly depends on the physiological status of the animal. A possible association between physiological calcium requirements and cadmium accumulation during moulting is discussed. Received: 20 January 2000 / Accepted: 20 July 2000  相似文献   

16.
Green crabs (Carcinus maenas) and rock crabs (Cancer irroratus) were exposed to various concentrations of copper as cupric chloride (CuCl2 · 2 H2O), and cadmium as cadmium chloride (CdCl2 · 21/2 H2O) for 48 h. The exposures were conducted at 5 different salinities. At the end of each exposure period, tests of blood-serum osmolality and gill-tissue oxygen consumption were performed. Copper-exposed crabs exhibited loss of osmoregulatory function with increasing copper concentration until normally hyperosmotic serum became isosmotic with the surrounding medium. Cadmium elevated greencrab serum above its normal hyperosmotic state. Copper had no effect on gill-tissue oxygen consumption; however, cadmium reduced the rate of oxygen consumption in both species tested.  相似文献   

17.
Vanadium-48 (as vanadate) was used to study the uptake, tissue distribution, depuration and food-chain transfer of vanadium through 3 species of echinoderms: the seastar Marthasterias glacialis L., the sea urchin Paracentrotus lividus Lmk. and the holothurian Holothuria forskali D.Ch.; all were collected from the littoral zone near Monaco. Uptake by all species was relativelyslow; after 3 wk exposure, isotopic equilibrium had not been reached and whole-body concentration factors ranged from 5 and 7 in the holothurian and sea urchin, respectively, to 18 in the seastar. Sixty-three to 77% of the incorporated radiotracer was associated with the body wall or test, suggesting surface sorption as the principal mechanism governing uptake from water. Stable vanadium measurements confirmed the preponderance of this element in the external hard parts of the echinoderms; however, concentration factors based on stable vanadium levels were significantly higher than those measured experimentally. Subsequent vanadium depuration rates were also species-dependent, with biological half-times for loss ranging from approximately 50 d in the sea urchin and holothurian to 123 d in the seastar. Food-chain transfer experiments indicated that seastars can assimilate and retain a large fraction of the vanadium ingested with food whereas sea urchins appear to lack this capability. The relative importance of the water and food input pathway in achieving vanadium levels in echinoderms is discussed in light of results of 48V distribution in experimental individuals and stable vanadium distribution in samples from the natural environment.  相似文献   

18.
The marine phytoplankter Dunaliella peircei was exposed to a concentration of 10.00μg/l of the chlorinated hydrocarbon insecticide dieldrin in sea-water solution. After 24 h exposure, the dieldrin residue level in the alga was 12.10μg/g, corresponding to a magnification factor of 1210. Clams, Rangia cuneata, allowed to feed on dieldrin-contaminated phytoplankters for 48 h exhibited a magnification of dieldrin residues in tissues up to 54 times greater than the concentration resulting from the resuspension of contaminated algal cells in clean seawater. This study demonstrates the transfer of dieldrin residues in a two-level food chain, i.e., from a contaminated alga to a bivalved mollusc allowed to feed on this alga.  相似文献   

19.
The crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta were exposed for 40 d to uranium (1.5 to 10 mg l-1) in continuous-flow sea water in separate starved and fed treatments, and the kinetics of uranium bioaccumulation were estimated from an exponential model. Starved and fed crabs took up U at a similar rate, which suggests that sea water was the major source of U to the crab; the fed crabs excreted U more rapidly than the starved crabs and this led to a lower net uptake of U by fed crabs. Fed and starved winkles took up U at similar rates and excreted it at similar rates, so the sea water was also the major source of U to winkles. Crabs took up more U than winkles; the concentration factors were 7 to 18 and 4, respectively. Uranium turnover was quite slow for both species (11 to 36 d) as it was also for winkle shells (6 d); this suggests that the rate-limiting processes which control turnover are biological (e.g. growth or tissue replacement) or physical (e.g. diffusion into the shell) rather than chemical (e.g. precipitation, adsorption or exchange). There was no effect of increasing U concentration in water on the U kinetic parameters.  相似文献   

20.
Accumulation rates of cadmium, the amount of food ingested and assimilated, the amount of oxygen consumed and changes in dry flesh weight have been measured in Mytilus edulis L. exposed to 0, 10 and 100 ppb cadmium for 17 d in aquaria with seawater flowing continously and at constant algal concentration. The accumulation rates were linear at 10 and 100 ppb, amounting to 0.58 and 8.89 ppm d-1, respectively. Body loads up to 150 ppm caused no effects on either clearance, ingestion, assimilation, respiration, or growth. High net growth efficiencies between 55–59% were obtained, indicating near optimal experimental conditions. It is suggested that the setup and experimental procedure provide an excellent tool in the study of accumulation and sublethal effects of environmental pollutants in suspension feeding bivalves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号