首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
随着污泥产量的不断增加,未能妥善处置的污泥会给环境带来许多隐患.污泥厌氧消化技术可使污泥“无害化”“减量化”“资源化”,是污泥处置的主流技术路线之一.但污泥的厌氧消化效率低,限制了该技术的推广应用.利用污泥厌氧发酵罐的回流沼液,对污水处理厂脱水的市政污泥进行酸化预处理,从而提高污泥的产沼气效率.结果表明,污泥厌氧发酵最...  相似文献   

2.
餐厨垃圾与污泥联合两步厌氧发酵产酸阶段条件优化试验   总被引:1,自引:0,他引:1  
以污水处理厂活性污泥为接种物,以餐厨垃圾为发酵底物进行两步厌氧发酵产气试验,考察了产酸阶段初始pH值、温度及发酵物的预处理方法对两步发酵产气的影响.结果表明,产酸阶段的初始pH值以5.0最佳,气体的累计产气量最大,为13.69 mL·g-1TVS,产酸阶段的温度以65℃最佳,产气的累计产气量最大,为74.35 mL·g...  相似文献   

3.
超声波对剩余污泥化学调理的影响   总被引:1,自引:0,他引:1  
李玉瑛  曹晨旸  李冰 《生态环境》2012,(7):1357-1360
以污泥脱水性能与沉降性能为指标,研究了超声波预处理对剩余污泥经阳离子聚丙烯酰胺(CPAM)进行化学调理时污泥减量效果的影响。试验结果表明,单独采用CPAM对剩余污泥进行化学调理时的ρ(最佳添加量)为120 mg.L-1,污泥滤饼含水率为81.2%;单独采用超声波处理剩余污泥时的最佳声能密度为0.04 W.mL-1,此时的滤饼含水率为80.4%。而当在采用CPAM对剩余污泥进行化学调理前先进行超声波预处理后,污泥滤饼含水率降至72.2%。试验结果表明这种联合处理方式不仅使剩余污泥的脱水性能大为改善,并且最佳CPAM投加量降低至60 mg.L-1,最佳超声声能密度降至0.03 W.mL-1,这表明联合处理方法降低了污泥处理成本。  相似文献   

4.
碱水解法提取剩余污泥蛋白质的条件优化   总被引:4,自引:0,他引:4  
为充分提取污水污泥中的细胞蛋白,实现污泥的增值利用,以青岛市李村河污水处理厂剩余污泥为材料,采用碱水解法提取剩余污泥中的蛋白质。正交试验结果表明:水解温度和反应体系pH对蛋白质提取率的影响较大;获得的提取污泥蛋白的最优工艺条件是水解温度为70℃,水解时间为5 h,反应体系pH为12.5,固液比(样品质量g/加水体积mL)为1:4。在上述条件下,剩余污泥蛋白质提取率可达54.49%,水解后的剩余残渣经干燥后测定可知,其质量相对于原污泥样品(干重)质量削减率达到22.95%。  相似文献   

5.
污水处理过程中产生的剩余污泥富含大量的氮磷元素,从剩余污泥中回收磷是解决磷资源日益缺乏的一种有效途径。探寻出剩余污泥中磷的释放规律是实现剩余污泥中磷回收的首要前提。因此,以实际污水处理厂污泥为研究对象,建立污泥停留时间为5d的中试模型系统。通过系统分析5d停留时间的厌氧条件下污泥中污泥浓度、上清液总磷和氨氮浓度的变化情况,为后续的污泥磷回收提供支撑条件。研究结果表明,在中试系统污泥停留时间5d的厌氧条件下,剩余污泥微生物衰亡自溶或被分解,胞内物质释放,从而使固态物质转化为液态,污泥中磷及相关的氮等物质得到了较大的释放,污泥上清液总磷和氨氮质量浓度可分别达到100和40 mg·L^-1以上。所释放出的氮磷浓度足以满足鸟粪石回收氮磷方法所需的最低经济性要求,为污泥进行厌氧消化后采用鸟粪石的方法回收释放的氮磷提供了重要的基础依据。研究中还发现5d停留时间下, SS和VSS都有不同程度的降低,二者分别减少8.34%和10.14%以上,其中VSS的减少量占SS减少量的65%左右。同时,进入厌氧反应系统的初始污泥浓度对于氮磷的释放有着较大的影响,反应系统的SS在6300~7200 mg·L^-1的条件下,磷和氮的单位质量污泥释放量达到最佳,分别达到单位干污泥0.015和0.006 mg·mg^-1。研究结果为剩余污泥中回收氮磷提供了重要的依据。  相似文献   

6.
城市污水处理厂污泥因有机物含量高而成为微生物燃料电池(MFC)应用研究的主要方向之一,而污泥中有机质的释放成为限制其发展的主要因素.本实验利用低温热解和过氧化氢氧化处理的耦合方法预处理城市污水处理厂污泥,分析了其作为燃料对MFC产电性能的影响.研究表明,利用预处理后的污泥上清液作为燃料,预处理温度、时间、pH值和过氧化氢投加量对MFC的产电性能影响大.当温度、时间、pH值和过氧化氢分别为100℃、90 min、11和500 g·kg TSS~(-1)的预处理条件下,MFC功率密度最大,分别为235、287、233.2、280 mW·m~(-3).采用热氧化法预处理污泥,可有利于污泥的破解,使能被产电菌利用的营养物质增多,提高了MFC产电特性,可为污泥资源化利用提供有益的参考.  相似文献   

7.
采用现场采样及室内分析方法,研究了西安市剩余污泥的基本理化性质,污泥中重金属元素的含量、赋存形态及迁移特征,并对市政污泥土地利用的潜在生态风险进行了评价。结果表明:西安市剩余污泥整体pH呈中性(6.24~8.12),具有高有机质(46.71%~72.41%)、高N(6.18%~6.94%)、高P(1.71%~4.21%)、低K(1.02%~2.03%)的特点,具有很好的土地利用价值;污泥中重金属(除Pb、Mn、Co外)及As整体含量高于《土壤环境质量标准》的二类标准(pH=6.5~7.5),但除Zn、Ni、Hg超过《农用污泥中污染物控制标准》酸性土壤(pH6.5)最高允许含量外,其余重金属及As均低于该标准值;西安市污泥中重金属的形态分布主要由重金属元素的性质决定,污泥中各重金属的迁移或稳定性顺序(F1+F2)为Cu(19.38%)Cr(21.2%)Pb(47.76%)Co(50.22%)Ni(54.63%)Mn(61.53%)Zn(74.21%);修正潜在生态风险评价结果表明,西安市剩余污泥重金属综合污染程度处于重度水平,污泥土地利用时重金属污染的潜在生态风险水平为严重,其中Hg为其首要贡献者,其次是Zn和Ni。  相似文献   

8.
污泥干化芦苇床中积存污泥的氮磷变化规律   总被引:1,自引:0,他引:1  
污泥干化芦苇床是近年发展起来的新型污泥处理技术,为探明污泥干化芦苇床中积存污泥的氮磷变化特征,进行为期3 a的试验研究.试验设3个单元:Ⅰ单元为对照(传统干化床),未种植植物;Ⅱ和Ⅲ单元种植芦苇(污泥干化芦苇床).Ⅰ和Ⅱ单元底部设通气装置.前2 a为负荷期,植物生长期进泥,冰封期闲置;第3年为污泥自然稳定期.试验结果表明,Ⅱ和Ⅲ单元对污泥中TN和TP的去除效果优于Ⅰ单元,其TN去除率分别为56.3%、53.2%和47.9%,TP去除率分别为18.8%、19.2%和10.3%.填料层设置通气结构有利于污泥中氮素的转化和去除,但对除磷无明显影响.至第3年末(11月),Ⅰ、Ⅱ和Ⅲ单元积存污泥TN、TP平均含量分别为37.0、31.0、33.2和7.00、6.33、6.30g·kg-1.  相似文献   

9.
微波碱解处理剩余污泥的厌氧消化性能   总被引:1,自引:0,他引:1  
为了研究微波碱解预处理(microwave/NaOH pretreatment,MNP)剩余污泥在高温和中温条件下厌氧消化的性能,采用半连续完全混合式反应器分别研究了MNP处理后的剩余污泥在高温厌氧消化工艺(thermophilic anaerobic di-gestion process,TADP)和中温厌氧消化工艺...  相似文献   

10.
研究了污泥厌氧发酵过程中产甲烷菌被特异性抑制剂——2-溴乙烷磺酸盐(BrCH2CH2SO3-,BES)抑制时乙酸的累积,并采用一种新的微生物分子生态学手段——末端限制性片段长度多态性分析(T-RFLP)研究乙酸累积状态下的微生物种群结构.结果表明,BES可以促使厌氧发酵中乙酸的累积,在污泥厌氧发酵初始时一次投加BES条件下,乙酸累积的最大值为1.158gL-1,是阴性对照样最大值的4倍.BES在d4开始投加并每间隔4d补加条件下,乙酸累积最大值为0.851gL-1.微生物种群结构分析表明,对于发酵初始投加BES的样品,乙酸累积主要来源于β-Pro-teobacteria和Sphingobacteria的作用.对于每4d投加BES的样品,Sphingobacteria在中间过程的d8占有较高比例,Bacilli和β-Proteobacteria在整个过程均占优势.图2表2参14  相似文献   

11.
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs. The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.  相似文献   

12.
污泥超声破解效应及厌氧消化性能研究   总被引:6,自引:0,他引:6  
针对超声破解污泥的可行性进行了实验研究,重点考察了超声频率、比能耗、作用时间等因素对破解效应的影响,探讨了破解污泥的厌氧消化性能。结果表明,超声作用的施加可使污泥固体有效破解,污泥细胞内的活性有机物被释放至水相并形成溶解性有机物,表现为SCODCr的显著增加;采用低频、高比能耗及延长作用时间有利于获取高的SCODCr增加值;污泥在频率25kHz、比能耗2.0W/mL、作用时间30min条件下破解,其厌氧消化累计产气量可从破解前的268mL提高到473mL,相应TCODCr去除率、VS去除率分别从39.1%、33.5%提高至54.3%、61.7%。研究结果表明采用超声破解技术提高污泥的厌氧消化性是可行的。  相似文献   

13.
添加剂对污泥厌氧消化性能的影响   总被引:1,自引:0,他引:1  
在间歇培养条件下,研究了还原型辅酶Ⅱ(NADPH)、乙酰辅酶A(Acetyl Co A)和对氨基苯甲酸(PABA)3种添加剂对污泥厌氧消化性能的影响.结果表明,3种微生物活性促进剂均能促进污泥厌氧消化产气.其中,NADPH的促进效果最为显著,消化第35 d,产甲烷量比对照组高15.90%.在污泥含固率为3%、未调初始pH(pH=6.7)和温度35℃的厌氧消化条件下,NADPH的最佳添加量为50 mg.L-1,消化第36 d,污泥累积产甲烷量127.13 mL.g-1VSS.在含固率3%、初始pH=8.5、温度55℃和NADPH添加量为50 mg.L-1的工艺条件下,污泥厌氧产气效果最佳,消化第30 d时累积产甲烷量达158.02 mL.g-1VSS.  相似文献   

14.
• High-solid anaerobic digestion (HS-AD) of sewage sludge (SS) is overviewed. • Factors affecting process stability and performance in HS-AD of SS are revealed. • HS effect and knowledge gaps of current research on the HS-AD of SS are identified. • Future efforts on addressing knowledge gaps and improving HS-AD of SS are proposed. High-solid anaerobic digestion (HS-AD) has been applied extensively during the last few decades for treating various organic wastes, such as agricultural wastes, organic fractions of municipal solid wastes, and kitchen wastes. However, the application of HS-AD to the processing of sewage sludge (SS) remains limited, which is largely attributable to its poor process stability and performance. Extensive research has been conducted to attempt to surmount these limitations. In this review, the main factors affecting process stability and performance in the HS-AD of SS are comprehensively reviewed, and the improved methods in current use, such as HS sludge pre-treatment and anaerobic co-digestion with other organic wastes, are summarised. Besides, this paper also discusses the characteristics of substance transformation in the HS-AD of SS with and without thermal pre-treatment. Research has shown that the HS effect is due to the presence of high concentrations of substances that may inhibit the function of anaerobic microorganisms, and that it also results in poor mass transfer, a low diffusion coefficient, and high viscosity. Finally, knowledge gaps in the current research on HS-AD of SS are identified. Based on these, it proposes that future efforts should be devoted to standardising the definition of HS sludge, revealing the law of migration and transformation of pollutants, describing the metabolic pathways by which specific substances are degraded, and establishing accurate mathematical models. Moreover, developing green sludge dewatering agents, obtaining high value-added products, and revealing effects of the above two on HS-AD of SS can also be considered in future.  相似文献   

15.
We have investigated the dependence of the rate of the production of biogas upon the concentration of nickel, cobalt and iron at sub-toxic concentration and monitored its composition as amount of hydrogen, methane and carbon dioxide. The distribution of the added metals between the liquid and solid phase has also been monitored.

The results of our investigations show that the addition of any of the listed metals to the sludge may cause the production of a higher amount of biogas and influence the methane or carbon dioxide percentage. Conversely, the effect on the hydrogen production depends upon the metal added, the age of the active sludge used, and its adaptation to the susbtrate. As a general feature, during the acidogenesis phase, nickel reduces, while iron increases, the percentage of dihydrogen in the biogas, while cobalt has no influence.  相似文献   

16.
We have investigated the dependence of the rate of the production of biogas upon the concentration of nickel, cobalt and iron at sub-toxic concentration and monitored its composition as amount of hydrogen, methane and carbon dioxide. The distribution of the added metals between the liquid and solid phase has also been monitored.

The results of our investigations show that the addition of any of the listed metals to the sludge may cause the production of a higher amount of biogas and influence the methane or carbon dioxide percentage. Conversely, the effect on the hydrogen production depends upon the metal added, the age of the active sludge used, and its adaptation to the susbtrate. As a general feature, during the acidogenesis phase, nickel reduces, while iron increases, the percentage of dihydrogen in the biogas, while cobalt has no influence.  相似文献   

17.
Sludge digestion is critical to control the spread of ARGs from wastewater to soil. Fate of ARGs in three pretreatment-AD processes was investigated. UP was more efficient for ARGs removal than AP and THP in pretreatment-AD process. The total ARGs concentration showed significant correlation with 16S rRNA gene. The bacteria carrying ARGs could be mainly affiliated with Proteobacteria. Sewage sludge in the wastewater treatment plants contains considerable amount of antibiotic resistance genes (ARGs). A few studies have reported that anaerobic digestion (AD) could successfully remove some ARGs from sewage sludge, but information on the fate of ARGs in sludge pretreatment-AD process is still very limited. In this study, three sludge pretreatment methods, including alkaline, thermal hydrolysis and ultrasonic pretreatments, were compared to investigate the distribution and removal of ARGs in the sludge pretreatment-AD process. Results showed that the ARGs removal efficiency of AD itself was approximately 50.77%, and if these three sludge pretreatments were applied, the total ARGs removal efficiency of the whole pretreatment-AD process could be improved up to 52.50%–75.07%. The ultrasonic pretreatment was more efficient than alkaline and thermal hydrolysis pretreatments. Although thermal hydrolysis reduced ARGs obviously, the total ARGs rebounded considerably after inoculation and were only removed slightly in the subsequent AD process. Furthermore, it was found that the total ARGs concentration significantly correlated with the amount of 16S rRNA gene during the pretreatment and AD processes, and the bacteria carrying ARGs could be mainly affiliated with Proteobacteria.  相似文献   

18.
• ORP value from −278.71 to −379.80 mV showed indiscernible effects on methane yield. • Fe(II) and Fe(III) promoted more degradation of proteins and amino acids than Fe0. • The highest enrichment of Geobacter was noted in samples added with Fe0. • Cysteine was accumulated during iron enhanced anaerobic sludge digestion. • Both iron content and valence were important for methane production. This study compared effects of three different valent iron (Fe0, Fe(II) and Fe(III)) on enhanced anaerobic sludge digestion, focusing on the changes of oxidation reduction potential (ORP), dissolved organic nitrogen (DON), and microbial community. Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days (d), the maximum methane production rate of sludge samples dosed with respective Fe0, Fe(II) and Fe(III) at the same concentration showed indiscernible differences at each iron dose, regardless of the different iron valence. Moreover, their behavior in changes of ORP, DON and microbial community was different: (1) the addition of Fe0 made the ORP of sludge more negative, and the addition of Fe(II) and Fe(III) made the ORP of sludge less negative. However, whether being more or less negative, the changes of ORP may show unobservable effects on methane yield when it ranged from −278.71 to −379.80 mV; (2) the degradation of dissolved organic nitrogen, particularly proteins, was less efficient in sludge samples dosed with Fe0 compared with those dosed with Fe(II) and Fe(III) after an incubation period of 30 d. At the same dose of 160 mg/L iron, more cysteine was noted in sludge samples dosed with Fe(II) (30.74 mg/L) and Fe(III) (27.92 mg/L) compared with that dosed with Fe0 (21.75 mg/L); (3) Fe0 particularly promoted the enrichment of Geobacter, and it was 6 times higher than those in sludge samples dosed with Fe(II) and Fe(III) at the same dose of 160 mg/L iron.  相似文献   

19.
The biosorption of Direct Black 38 by dried anaerobic granular sludge in a batch system under specific temperatures and initial pH was investigated. The adsorption reaction is pH dependent with higher removal at low pH. The adsorption equilibrium data fit very well with both Langmuir and Freundlich models in the concentration range of Direct Black 38 at all chosen temperatures. The adsorption parameters show that the adsorption of Direct Black 38 is an endothermic and more effective process at high temperatures. The kinetics of adsorption was found to be second order and adsorption rate constants increased with increasing temperature. Activation energy was determined as 26.8 kJ/mol for the process. This suggests that the adsorption of Direct Black 38 by dried anaerobic granular sludge is chemically controlled.  相似文献   

20.
To investigate the influence of illumination on the fermentative hydrogen production system, the hydrogen production efficiencies of two kinds of anaerobic activated sludge (floc and granule) from an anaerobic baffled reactor were detected under visible light, dark and light-dark, respectively. The 10 mL floc sludge or granular sludge was respectively inoculated to 100 mL diluted molasses (chemical oxygen demand of 8000 mg·L-1) in a 250 mL serum bottle, and cultured for 24 h at 37°C under different illumination conditions. The results showed that the floc was more sensitive to illumination than the granule. A hydrogen yield of 19.8 mL was obtained in the dark with a specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1 (floc), which was the highest among the three illumination conditions. Under dark condition, the hydrogen yield of floc sludge reached the highest with the specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1, and under light-dark, light, the specific hydrogen production rate was 3.11 and 2.21 mol·kg-1MLVSS·d-1, respectively. The results demonstrated that the illumination may affect the dehydrogenase activity of sludge as well as the activity of hydrogen-producing acetogens and then impact hydrogen production capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号