首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract: The past three decades have seen major declines in populations of several species of amphibians at high elevations in eastern Puerto Rico, a region unique in the humid tropics because of the degree of environmental monitoring that has taken place through the efforts of U.S. government agencies. I examined changes in environmental conditions by examining time-series data sets that extend back at least into the 1980s, a period when frog populations were declining. The data include forest cover; annual mean, minimum, and maximum daily temperature; annual rainfall; rain and stream chemistry; and atmospheric-dust transport. I examined satellite imagery and air-chemistry samples from a single National Aeronautics and Space Administration aircraft flight across the Caribbean showing patches of pollutants, described as thin sheets or lenses, in the lower troposphere. The main source of these pollutants appeared to be fires from land clearing and deforestation, primarily in Africa. Some pollutant concentrations were high and, in the case of ozone, approached health limits set for urban air. Urban pollution impinging on Puerto Rico, dust generation from Africa ( potential soil pathogens), and tropical forest burning ( gaseous pollutants) have all increased during the last three decades, overlapping the timing of amphibian declines in eastern Puerto Rico. None of the data sets pointed directly to changes so extreme that they might be considered a direct lethal cause of amphibian declines in Puerto Rico. More experimental research is required to link any of these environmental factors to this problem.  相似文献   

2.
The inconsistent distribution of large‐scale infection mediated die‐offs and the subsequent population declines of several animal species, urges us to understand how, when, and why species are affected by disease. It is often unclear when or under what conditions a pathogen constitutes a threat to a host. Often, variation of environmental conditions plays a role. Globally Batrachochytrium dendrobatidis (Bd) causes amphibian declines; however, host responses are inconsistent and this fungus appears equally capable of reaching a state of endemism and subsequent co‐existence with native amphibian assemblages. We sought to identify environmental and temporal factors that facilitate host–pathogen coexistence in northern Europe. To do this, we used molecular diagnostics to examine archived and wild amphibians for infection and general linear mixed models to explore relationships between environmental variables and prevalence of infection in 5 well‐sampled amphibian species. We first detected infection in archived animals collected in 1999, and infection was ubiquitous, but rare, throughout the study period (2008–2010). Prevalence of infection exhibited significant annual fluctuations. Despite extremely rare cases of lethal chytridiomycosis in A. obstetricans, Bd prevalence was uncorrelated with this species’ population growth. Our results suggest context dependent and species‐specific host susceptibility. Thus, we believe recent endemism of Bd coincides with environmentally driven Bd prevalence fluctuations that preclude the build‐up of Bd infection beyond the critical threshold for large‐scale mortality and host population crashes. Determinantes Ambientales del Endemismo Reciente de Infecciones de Batrachochytrium dendrobatidis en Conjuntos de Anfibios en Ausencia de Brotes de Enfermedades Spitzen et al.  相似文献   

3.
Recent reports of world-wide declines and extinctions of amphibian populations have raised questions about the relation of environmental change to the demise of certain amphibian species. Between 1974 and 1982, 11 populations of boreal toads ( Bufo boreas boreas ) in the West Elk Mountains of Colorado totally disappeared. The apparent cause of extinction of these toads was infection with the bacteria Aeromonas hydrophila . In this paper, the presence of disease in declining populations of these toads is used in conjunction with a variety of data from the literature to formulate a working hypothesis for explaining the cause of the decline of this species, and perhaps others:

4.
Abstract:  As part of an overall biodiversity crisis many amphibian populations are in decline throughout the world. Numerous causes have been invoked to explain these declines. These include habitat destruction, climate change, increasing levels of ultraviolet radiation, environmental contamination, and the introduction of non-native species and diseases. Several types of pathogens have been implicated in contributing to amphibian population declines: viruses, bacteria, oomycetes, and fungi. One particular fungus, the chytridiomycete Batrachochytrium dendrobatidis may have caused amphibian population declines in several regions. This pathogen causes chytridiomycosis, which is fatal to newly metamorphic and adult amphibians of certain species. We present experimental evidence that larval stages may also be susceptible to exposure to Batrachochytrium . There was, however, differential sensitivity to B. dendrobatidis in larvae we examined. In laboratory experiments, larval western toads (  Bufo boreas ) exposed to B. dendrobatidis experienced increased mortality and behaviors that suggested they were affected by exposure compared with unexposed control tadpoles. Larvae of Cascades frogs (  Rana cascadae ), bullfrogs ( R. catesbeiana ), and Pacific treefrogs ( Hyla regilla ) did not die after exposure to Batrachochytrium and appeared to behave normally. R. cascadae larvae exposed to B. dendrobatidis , however, showed an increase incidence in mouthpart abnormalities, a characteristic effect of chytridiomycosis, compared with unexposed controls. These results show that Batrachochytrium can negatively affect some species of amphibians at the larval stage and not others. The implications of interspecific variation in susceptibility to fungal infection are broad.  相似文献   

5.
Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is widespread among amphibians in northeastern North America. It is unknown, however, whether Bd has the potential to cause extensive amphibian mortalities in northeastern North America as have occurred elsewhere. In the laboratory, we exposed seven common northeastern North American amphibian species to Bd to assess the likelihood of population-level effects from the disease. We exposed larval wood frogs (Lithobates sylvaticus) and postmetamorphic frogs of six other species to two different strains of Bd, a northeastern strain (JEL404) and a strain that caused die-offs of amphibians in Panama (JEL423), under ideal in vitro growth conditions for Bd. Exposed American toads (Anaxyrus americanus) all died; thus, this species may be the most likely to die from Bd-caused disease in the wild. Both Bd strains were associated with mortalities of wood frogs, although half the metamorphs survived. The Bd strain from Panama killed metamorphic green frogs (L. clamitans), whereas the northeastern strain did not, which means novel strains of Bd may lead to death even when local strains may not. No mortality was observed in four species (bullfrogs [L. catesbeianus], northern leopard frogs [L. pipiens], spring peepers [Pseudacris crucifer], and blue-spotted salamanders [Ambystoma laterale]) and in some individuals of green frogs and wood frogs that we exposed. This finding suggests these six species may be Bd vectors. Our results show that systematic exposures of amphibian species to Bd in the laboratory may be a good first step in the identification of species susceptible to Bd-caused declines and in directing regional conservation efforts aimed at susceptible species.  相似文献   

6.
Extinctions are normal biological phenomena. Both mass extinctions in geological time and local extinctions in ecological time are well documented, but rates of extinction have increased in recent years—especially in vertebrates, including amphibians—as illustrated by recent reports of their population declines and range reductions. We suggest that long-term population data are necessary for rigorously evaluating the significance of the amphibian declines. Due to the physiological constraints, relatively low mobility, and site fidelity of amphibians, we suggest that many amphibian populations may be unable to recolonize areas after local extinction.  相似文献   

7.
There has been much concern about widespread declines among amphibians, but efforts to determine the extent and magnitude of these declines have been hampered by scarcity of comparative inventory data. We resurveyed a transect of the Sierra Nevada mountains in western North America that was carefully studied in the early 1900s. Our comparisons show that at least five of the seven frog and toad species in the area have suffered serious declines. One species has disappeared from the area entirely and a second species, formerly the most abundant amphibian in the area, has dwindled to a few small remnant populations. These declines have occurred in a relatively undisturbed, protected area and show some of the same patterns noted in other reports of amphibian declines. Introduced predatory fish, possibly interacting with drought-induced loss of refuge habitats, have contributed to the decline of some species. However, the overall cause of these dramatic losses remains unknown.  相似文献   

8.
《Conservation biology》2006,20(5):1457-1465
Abstract:  Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog [Rana sphenocephala ]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.  相似文献   

9.
Abstract: Although dramatic amphibian population declines have been reported worldwide, our understanding of the extent of the declines in Latin America, where amphibian diversity is high, is limited to a few well-documented studies. To better understand the geographic extent of declines, their possible causes, and the measures needed to improve Latin American scientists' ability to research the phenomenon and make effective management recommendations, we convened three regional workshops with 88 Latin American herpetologists and conservationists. Population declines are widespread in Latin America. At least 13 countries have experienced declines, and in 40 cases species are now thought to be extinct or extirpated in a country where they once occurred. Declines or extinctions have affected 30 genera and nine families of amphibians. Most declines have occurred in remote highlands, above 500 m in elevation in Central America and above 1000 m in the Andes. Most documented declines occurred in the 1980s. Of the possible causes studied to date, climate change appears to be important at one site and chytrid fungal disease has been identified at sites in three countries. Although many monitoring studies are currently underway in a variety of habitats, most studies are recent and of short duration. In a signed resolution, workshop participants called for greater collaboration and communication among scientists working in Latin America to understand the geographic extent of population declines and the distribution of possible causal factors. In situ conservation is important to protect habitats, but captive-rearing programs for species subject to imminent extinction are also needed. Better understanding of the taxonomy and natural history of amphibians and more funding for research and monitoring are critical to developing a scientific basis for management action to arrest and reverse population declines.  相似文献   

10.
More than 40% of Earth's 5700+ amphibian species have undergone recent declines. Despite the likely involvement of multiple factors in driving these declines, most studies continue to focus on single stressors. In California (USA), separate studies have implicated either introduced fish or pesticides as causal agents. To date, however, no study has simultaneously evaluated the respective roles of these two potential stressors nor attempted to assess their relative importance, information critical for the development of effective conservation efforts and environmental policies. We examined the role and relative effect of fish and pesticides on the mountain yellow-legged frog (Rana muscosa) using unusually detailed data sets for a large portion of R. muscosa's historic range in California's Sierra Nevada. Habitat characteristics and presence/absence of R. muscosa and fish were quantified at each of 6831 sites during field surveys. Pesticide use upwind of each site was calculated from pesticide application records and predominant wind directions. Using generalized additive models, we found that, after accounting for habitat effects, the probability of R. muscosa presence was significantly reduced by both fish and pesticides, with the landscape-scale effect of pesticides much stronger than that of fish. The degree to which a site was sheltered from the predominant wind (and associated pesticides) was also a significant predictor of R. muscosa presence. Taken together, these results represent the strongest evidence to date that windborne pesticides are contributing to amphibian declines in pristine locations. Our results suggest that amphibian declines may have complex multi-factorial causes, and caution that single-factor studies that demonstrate the importance of one factor should not be used as evidence against the importance of other factors.  相似文献   

11.
Declines in survival and reproduction with age are prevalent in wild vertebrates, but we know little about longitudinal changes in behavioral, morphological, or physiological variables that may explain these demographic declines. We compared age-related variation in body mass of adult females in three free-living ungulate populations that have been the focus of long-term, individual-based research: bighorn sheep (Ovis canadensis) at Ram Mountain, Canada; roe deer (Capreolus capreolus) at Trois Fontaines, France; and Soay sheep (Ovis aries) on St. Kilda, Scotland. We use two recently proposed approaches to separate contributions to age-dependent variation at the population level from within-individual changes and between-individual selective disappearance. Selective disappearance of light individuals in all three populations was most evident at the youngest and oldest ages. In later adulthood, bighorn sheep and roe deer showed a continuous decline in body mass that accelerated with age while Soay sheep showed a precipitous decrease in mass in the two years preceding death. Our results highlight the importance of mass loss in explaining within-individual demographic declines in later adulthood in natural populations. They also reveal that the pattern of senescence, and potentially also the processes underlying demographic declines in late life, can differ markedly across related species with similar life histories.  相似文献   

12.
Abstract:  We examined factors that may independently or synergistically contribute to amphibian population declines. We used epidemiologic case–control methodology to sample and analyze a large database developed and maintained by the Arizona Game and Fish Department that describes historical and currently known ranid frog localities in Arizona, U.S.A. Sites with historical documentation of target ranid species ( n = 324) were evaluated to identify locations where frogs had disappeared during the study period (case sites) and locations where frog populations persisted (control sites). Between 1986 and 2003, 117 (36%) of the 324 sites became case sites, of which 105 were used in the analyses. An equal number of control sites were sampled to control for the effects of time. Risk factors, or predictor variables, were defined from environmental data summarized during site surveys and geographic information system data layers. We evaluated risk factors with univariate and multifactorial logistic-regression analyses to derive odds ratios (OR). Odds for local population disappearance were significantly related to 4 factors in the multifactorial model. Disappearance of frog populations increased with increasing elevation (OR = 2.7 for every 500 m, p < 0.01). Sites where disappearances occurred were 4.3 times more likely to have other nearby sites that also experienced disappearances (OR = 4.3, p < 0.01), whereas the odds of disappearance were 6.7 times less (OR = 0.15, p < 0.01) when there was a source population nearby. Sites with disappearances were 2.6 times more likely to have introduced crayfish than were control sites (OR = 2.6, p = 0.04). The identification of factors associated with frog disappearances increases understanding of declines occurring in natural populations and aids in conservation efforts to reestablish and protect native ranids by identifying and prioritizing implicated threats.  相似文献   

13.
Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts—species that carry infection while maintaining high abundance but are rarely killed by disease—can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species.  相似文献   

14.
Correctly classifying a species as extinct or extant is of critical importance if current rates of biodiversity loss are to be accurately quantified. Observing an extinction event is rare, so in many cases extinction status is inferred using methods based on the analysis of records of historic sighting events. The accuracy of such methods is difficult to test. However, results of recent experiments with microcosm communities suggest that the rate at which a population declines to extinction, potentially driven by varying environmental conditions, may alter one's ability accurately to infer extinction status. We tested how the rate of population decline, driven by historic environmental change, alters the accuracy of 6 commonly applied sighting‐based methods used to infer extinction. We used data from small‐scale experimental communities and recorded wild population extirpations. We assessed how accuracy of the different methods was affected by rate of population decline, search effort, and number of sighting events recorded. Rate of population decline and historic population size of the species affected the accuracy of inferred extinction dates; however, faster declines produced more accurate inferred dates of extinction, but only when population sizes were higher. Optimal linear estimation (OLE) offered the most reliable and robust estimates, though no single method performed best in all situations, and it may be appropriate to use a different method if information regarding historic search efforts is available. OLE provided the most accurate estimates of extinction when the number of sighting events used was >10, and future use of this method should take this into account. Data from experimental populations provide added insight into testing techniques to discern wild extirpation events. Care should be taken designing such experiments so that they mirror closely the abundance dynamics of populations affected by real‐world extirpation events. Efectos del Cambio Ambiental Reciente sobre la Precisión de las Inferencias sobre el Estado de Extinción  相似文献   

15.
In the montane rain forests of eastern Australia at least 14 species of endemic, stream-dwelling frogs have disappeared or declined sharply (by more than 90%) during the past 15 years. We review available information on these declines and present eight lines of evidence that collectively suggest that a rapidly spreading, epidemic disease is the most likely responsible agent. The extreme virulence of the putative frog patbogen suggests it is likely exotic to Australian rain forests. We propose that exotic pathogens may be responsible for some recent declines of amphibian populations on other continents and that the intercontinental spread of such pathogens is greatly facilitated by human activities such as the thriving international trade in aquarium fish. Our hypothesis may help explain why some amphibian populations in seemingly pristine environments have mysteriously declined.  相似文献   

16.
A leading hypothesis of amphibian population declines is that combinations of multiple stressors contribute to declines. We examined the role that chemical contamination, competition, and predation play singly and in combination in aquatic amphibian communities. We exposed larvae of American toads (Bufo americanus), southern leopard frogs (Rana sphenocephala), and spotted salamanders (Ambystoma maculatum) to overwintered bullfrog tadpoles (R. catesbeiana), bluegill sunfish (Lepomis macrochirus), the insecticide carbaryl, and ammonium nitrate fertilizer in 1000-L mesocosms. Most significantly, our study demonstrated that the presence of multiple factors reduced survival of B. americanus and A. maculatum and lengthened larval periods of R. sphenocephala. The presence of bluegill had the largest impact on the community; it eliminated B. americanus and A. maculatum and reduced the abundance of R. sphenocephala. Chemical contaminants had the second strongest effect on the community with the insecticide, reducing A. maculatum abundance by 50% and increasing the mass of anurans (frogs and toads) at metamorphosis; the fertilizer positively influenced time and mass at metamorphosis for both anurans and A. maculatum. Presence of overwintered bullfrogs reduced mass and increased time to metamorphosis of anurans. While both bluegill and overwintered bullfrog tadpoles had negative effects on the amphibian community, they performed better in the presence of one another and in contaminated habitats. Our results indicate that predicting deleterious combinations from single-factor effects may not be straightforward. Our research supports the hypothesis that combinations of factors can negatively impact some amphibian species and could contribute to population declines.  相似文献   

17.
Abstract: Successful protection of biodiversity requires increased understanding of the ecological characteristics that predispose some species to endangerment. Theory posits that species with polymorphic or variable coloration should have larger distributions, use more diverse resources, and be less vulnerable to population declines and extinctions, compared with taxa that do not vary in color. We used information from literature on 194 species of Australian frogs to search for associations of coloration mode with ecological variables. In general, species with variable or polymorphic color patterns had larger ranges, used more habitats, were less prone to have a negative population trend, and were estimated as less vulnerable to extinction compared with nonvariable species. An association of variable coloration with lower endangerment was also evident when we controlled statistically for the effects of range size. Nonvariable coloration was not a strong predictor of endangerment, and information on several characteristics is needed to reliably identify and protect species that are prone to decline and may become threatened by extinction in the near future. Analyses based on phylogenetic‐independent contrasts did not support the hypothesis that evolutionary transitions between nonvariable and variable or polymorphic coloration have been accompanied by changes in the ecological variables we examined. Irrefutable demonstration of a role of color pattern variation in amphibian decline and in the dynamics and persistence of populations in general will require a manipulative experimental approach.  相似文献   

18.
Conservation Biology of Caecilian Amphibians   总被引:2,自引:0,他引:2  
Abstract:  Most of the available data on declining populations of amphibians pertain to frogs and, to a lesser extent, salamanders. In keeping with their generally less understood biology, the population trends and conservation status of caecilian amphibians (Gymnophiona) are also much less known. We reviewed reports of threats to and declines of populations of caecilians. Despite a lack of field-study details (e.g., localities, dates, and sampling methods) and quantitative data, there are several recent reports of threats to and declines and extinctions of caecilians. A range of causal explanations (habitat loss, pollution, chytridiomycosis, and scientific collecting) for these perceived declines have been proposed but little or no associated evidence has been given. Although caecilians are often considered rare and thought to require pristine habitat, published, quantitative data demonstrate that at least some species can occur in high abundance in disturbed, synanthropic environments. Few estimates of caecilian population parameters have been made and very few field methods have been tested, so the assumed rarity of any taxa remains inadequately demonstrated. Distribution and taxonomic data are also inadequate. Because they are generally poorly known and often cryptic, caecilians can be overlooked in standard faunal surveys, meaning that lack of opportunistic collection over several years might not represent evidence of decline. The conservation status of most species must be considered data deficient. More precise assessments will require a substantial increase in all areas of caecilian research, especially those involving new fieldwork. Future reports of caecilian conservation biology need to be explicit and more quantitative.  相似文献   

19.
Abstract: There is significant variation among and within amphibian species with respect to reports of population decline; declining species are often found in environments that are physiograpically similar to environments where the same species is thriving. Because variability exists among organisms in their sensitivity to environmental stressors, it is important to determine the degree of this variation when undertaking conservation efforts. We conducted both lethal (time-to-death) and sublethal (activity change) assays to determine the degree of variation in the sensitivity of tadpoles to a pesticide, carbaryl, at three hierarchical levels: among ranid species, among several populations of a single ranid species (   Rana sphenocephala ), and within populations of R. sphenocephala . We observed significant variation in time to death among the nine ranid species and among the 10 R. sphenocephala populations we tested. Four out of eight R. sphenocephala populations exhibited significantly different times to death among families. The magnitude of the activity change in response to exposure to sublethal carbaryl levels was significantly different among species and within R. sphenocephala populations. Chemical contamination, at lethal or sublethal levels, can alter natural regulatory processes such as juvenile recruitment in amphibian populations and should be considered a contributing cause of declines in amphibian populations.  相似文献   

20.
Abstract: Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200–3700 m). We used visual encounter surveys to sample stream‐dwelling and arboreal species and leaf‐litter plots to sample terrestrial‐breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream‐dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial‐breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream‐dwelling and arboreal frogs were lower in the combined 2008–2009 period than in 1999, whereas densities of frogs in leaf‐litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号