首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环境中多溴联苯醚(PBDEs)的代谢转化研究现状   总被引:1,自引:0,他引:1  
多溴联苯醚(PBDEs)作为一种溴系阻燃剂(BFRs),在多种环境介质和生物体内广泛存在且浓度逐年增加,因而越来越多地受到研究者关注.综合PBDEs各方面研究报道,认为其在环境中存在生物和非生物两种转化方式.非生物转化主要是光降解,即PBDEs在光照条件下可通过自由基反应脱溴生成低溴同系物及多溴联苯呋喃(PBDFs).生物转化则包括微生物转化、生物体内转化和生物体外代谢,其转化代谢途径除脱溴外,还有醚键断裂、羟基化和羟基化/脱溴等.对PBDEs在环境中不同转化方式的转化速率、转化途径和转化产物等的研究现状进行综述,对今后PBDEs在环境中归趋、生态风险和健康评价研究将起到一定的指导作用.  相似文献   

2.
The degradative kinetics of pesticides on plant surface are characterized by an initial rapid degradation which follows a first-order kinetics, then transferred to a more slower degradative rate. The degradative process mainly consists of photodegradation, evaporation, rainfall elution and growth dilution. The influencing parameters of these processes were investigated by using the tea plant as a case study. The predictive model of the initial concentration, photodegradation rate constant, evaporation rate constant, rainfall elution rate, growth dilution rate and the total degradation rate was discussed and verified in four locations situated in the range of 25°-30°N latitude, and acceptable results were obtained.  相似文献   

3.
An atmospheric pressure photoionisation (APPI) source for liquid chromatography/mass spectrometry (LC/MS) was applied to determine neonicotinoid pesticides in the aquatic environment. Dopant-assisted APPI was very effective in the ionisation of neonicotinoids. Neonicotinoids generated protonated molecules in APPI with high sensitivity, while adduct ions, such as sodiated molecules, were predominantly generated in conventional electrospray ionisation. The ionisation of neonicotinoids was confirmed by ultra-high-resolution MS. An analytical method coupled with solid phase extraction was developed for acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, and thiamethoxam. Method detection limits were 0.47 to 2.1 ng L(-1) for six neonicotinoids. Dinotefuran was the most frequent and highest among the neonicotinoids examined in the aquatic environment in Osaka, Japan. The maximum concentration of dinotefuran was 220 ng L(-1). Given the toxicity of neonicotinoids for aquatic creatures, the concentrations observed here were substantially low. The change in concentrations was temporally coincident with the period of the neonicotinoid application. Although rapid photodegradation and some degradation products have been elucidated, the degradation products in the aquatic environment were not identified in the present study.  相似文献   

4.
A method for the determination of residues of mesotrione, atrazine and its degradation products: deethylatrazine, hydroxyatrazine, deisopropylatrazine, desethyldesisopropylatrazine in a variety of water and soil matrices has been developed. Mesotrione is a new selective herbicide for use in corn, which has been substituted for atrazine, which has been banned in European Union countries since 2007. Although atrazine has not been used for three vegetative periods, it is still detected in the environment. The analysis was conducted by means of ultra-high-pressure liquid chromatography with ultraviolet detection and liquid chromatography with diode array detection. The procedures for analyte separation from water and soil matrices were also established. The optimal conditions for solid-phase extraction (SPE) were determined. The recoveries were compared with that obtained by means of SPE. Method fortification recoveries from water samples averaged 78–97% and for soil 80–97% depending on the analyte and type of sample. The limits of detection were 0.04–0.61 μg/L for water samples and for soil samples 0.02–0.88 μg/g. The soil samples were collected in spring 2009 from three different fields with water samples being made from effluents from these fields. Samples collection was conducted in the day of mesotrione (Callisto 100SC) application and then done weekly, until the mesotrione concentration was below the limit of quantification. The results enabled the monitoring of mesotrione degradation in soil and its permeability into surface waters; simultaneously, the same studies were conducted for atrazine.  相似文献   

5.
环境分子诊断技术(EMDSs)是有机单体同位素分析和各种分子生物学技术的总称,将其应用于污染场地特征识别、修复方案可行性评估、监测和修复终止等污染场地环境管理过程中,探明土壤和地下水中污染物生物和非生物降解过程、降解速率及机制,确定不同污染来源,可弥补传统污染场地环境管理方法的不足,具有广阔的发展前景。文章综述了污染场地环境管理过程及传统方法的不足,介绍了有机单体同位素分析和各种分子生物学技术的基本原理和用途,并对各种技术的特点进行阐述和对比;介绍了EMDSs在污染场地环境管理中的实际应用,提出了EMDSs的发展趋势。  相似文献   

6.
Most agronomic situations involve a sequence of herbicide, fungicide, and insecticide application. On the other hand, use of pesticidal combinations has become a standard practice in the production of many agricultural crops. One of the most important processes influencing the behavior of a pesticide in the environment is its degradation in soil. It is known that due to several pesticide applications in one vegetation season, the pesticide may be present in mixtures with other pesticides or xenobiotics in soil. This study examines the role which a mixture of chemicals plays in pesticide degradation. The influence of other pesticides on the rate of pendimethalin (PDM) degradation in soil was measured in controlled conditions. Mixtures of PDM with mancozeb or mancozeb and thiamethoxam significantly influenced the degradation of pendimethalin under controlled conditions. The second type of mixtures, with metribuzin or thiamethoxam, did not affect the behavior of pendimethalin in soil. Also, we determined the influence of water content on the rate of pendimethalin degradation alone in two soils and compared it to the rate in three pesticide mixtures. We compared two equations to evaluate the predictors of the rate of herbicide dissipation in soil: the first-order kinetic and the non-linear empirical models. We used the non-linear empirical model assuming that the degradation rate of a herbicide in soil is proportional to the difference of the observed concentration of herbicide in soil at time and concentration of herbicide in the last day of measurement.  相似文献   

7.
Concentration of trace elements such as Fe, Cu, Ni, and Zn were measured in cereals, pulses, vegetables, fish, meat, milk, egg, and water samples collected around Kakrapar, Gujarat, India. A wide variation of the trace element concentration was observed among all the dietary matrices. The concentration of Fe is comparatively more in all the dietary matrices. The concentrations of these elements are translated into intake rates through ingestion pathways. Daily intake (milligrams/day) of Fe, Cu, Ni, and Zn by adult population of Kakrapar, Gujarat were 16.5 ± 6.2, 3.3 ± 1.2, 1.8 ± 1.0, and 3.6 ± 1.3, respectively. Dietary sources of Fe, Cu, and Ni by Kakrapar adult population are comparable with RDA. In case of Zn, the daily dietary intake is comparatively lower than that of RDA.  相似文献   

8.
介绍了水环境中氟喹诺酮类抗生素的危害,分析了其在污泥吸附、微生物降解和光降解作用下的去除机理。综述了去除氟喹诺酮类抗生素的常规处理技术(活性污泥法和人工湿地)、深度处理技术(高级氧化和膜处理),以及新型处理技术(超声降解、土壤渗滤系统和生物电强化)的研究进展与优劣,指出不同反应体系的去除机理和途径不一致,需要针对多相、多污染介质的复杂实际环境开展进一步研究。  相似文献   

9.
A detailed investigation on the kinetics of the oxidative degradation of a reactive dye, C. I. Reactive Red 2 by hydroxyl radicals generated by H202 and Fe2+ has been carried out in aqueous acidic media. Effects of different parameters like initial concentration of dye, H2O2, Fe2+, pH of the solution, reaction temperature and added electrolytes on the oxidation process have been studied. The results indicate that 1.63 x 10(-4) mol dm(-3) dye can be most effectively degraded at a dye: Fe2+: H2O2 molar ratio of 1:0.22: 8.13 at pH approximately 2.7 and at 299 K. The addition of excess 2-propanol or t-butyl alcohol, well known scavengers of hydroxyl radicals, almost stopped the degradation of the dye indicating the absence of any possible reductive pathways in the degradation. The results may be useful for designing the treatment systems of wastewater containing various reactive dyes.  相似文献   

10.
Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation–disturbance–environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai–Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation restoration measures in alpine pastoral regions.  相似文献   

11.
In this paper, magnetic carbon nanotube (M-CNT) was synthesized. The photocatalytic dye degradation ability of M-CNT in the presence of hydrogen peroxide (H2O2) from colored wastewater was studied. Manganese ferrite (MnFe2O4) was synthesized in the presence of multiwalled carbon nanotube. Direct Red 23 (DR23), Direct Red 31 (DR31), and Direct Red 81 (DR81) were used as anionic dyes. The characteristics of M-CNT were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The photocatalytic dye degradation using M-CNT was studied by UV–vis spectrophotometer and ion chromatography (IC). The effects of M-CNT dosage, initial dye concentration, and salt on the degradation of dye were evaluated. Formate, acetate, and oxalate anions were detected as dominant aliphatic intermediates. Inorganic anions (nitrate and sulfate anions) were detected and quantified as the mineralization products of dyes during the degradation process. The results indicated that the M-CNT could be used as a magnetic catalyst to degrade anionic dyes from colored wastewater.  相似文献   

12.
Different land uses affect the characteristics of a hydrographic basin, reflected in the river water quality, and consequently affecting the aquatic biota. The benthic community closely reflects the alterations caused by different human activities. In this study, the effects of different land uses were evaluated by analysis of the benthic community structure in streams with urban, agricultural and pasturage influences, as well as areas in better-conserved regions. The abiotic parameters showed distinct seasonal variability, which did not occur with the benthic organisms. A degradation gradient was observed among the study sites, in the headwaters-agriculture-pasture-urban direction. By the CCA its possible to observe that the density of organisms tended to increase along this gradient, whereas richness, diversity, evenness, and EPT families decreased. The most intense effects of land use on the benthic community composition, richness, and diversity were observed in urban areas (F (1,4) = 16.0, p = 0.01; F (1,4) = 8.97, p = 0.04; respectively). In conclusion a trend in the benthic community is observed in to predict alterations caused for the different land uses, mainly, when the source point pollution, as the case of urban area.  相似文献   

13.
The determination of alkanolamines and glycols in groundwater and subsurface environments is essential for environmental assessment, remediation and monitoring for selected industrial sites. Monoethanolamine (MEA), ammonium, sodium, magnesium and calcium detection was performed using cation exchange chromatography (IC) with suppressed conductivity detection. Acetate, chloride, nitrite, nitrate, phosphate, sulfate and oxalate were monitored employing anion exchange chromatography with suppressed conductivity. Detection of ethylene glycol (MEG) and triethylene glycol (TEG) and ethanol was carried out using ion exclusion chromatography with pulsed amperometric detection. Effective determination of MEA, MEG and TEG in complex groundwater matrices without compound transformation offered improved monitoring capabilities. This study presents robust analytical tools for MEA, MEG and TEG determination in biodegradation studies. Using ion chromatography offered significant advantages for the analyses of groundwater samples and laboratory bioreactor monitoring.  相似文献   

14.
The results of a degradation study of the (fluoro)quinolone antibiotics ciprofloxacin and oxolinic acid in river water samples are presented in this paper. The decomposition of these compounds at ambient temperature was monitored during five months by HPLC-UV, and two consecutive degradation processes (photo- and bio/chemical-degradation) were observed in both cases although with different degradation rates. Ciprofloxacin was completely degraded after 3 months whereas 80% of oxolinic acid remained unaltered after five months of storage. The analysis of the degradation compounds formed was carried out using MS and tandem MS-MS, allowing the identification of four new ciprofloxacin transformation products not previously described in the literature. Possible degradation pathways for this antibiotic in river water are proposed.  相似文献   

15.
The distribution of butyltin (BT) compounds in the sediments and seawater, at the river outfalls, fishing ports, shipyards, and industrial zone docks of Kaohsiung Harbor, Taiwan were investigated. Twenty sediment and seawater samples were collected from various locations in the Harbor in 2006 and analyzed for monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT). Results showed that the concentration of total BTs varied from 1.5 to 151 ng/g in sediment samples, with TBT being the major component of the sediment samples. This suggests that sediments could be the most possible sink of TBT brought by the sorption mechanism. The concentrations of BTs ranged from 9.7 to 270 ng/L in seawater samples, whereas DBT and MBT, the degradation byproducts of TBT, were mainly the most abundant BT compounds of the seawater samples. This indicates that the abiotic or biotic degradation potential of TBT was significant. Spatially, the highest concentrations of BTs were observed in both water and sediment samples collected from the shipyard and fishing port areas. This indicates that the shipping-related activities (e.g., navigation, ship repair, and ship building) would contribute most of BTs in the environment. Results show that the concentrations of degradation products (DBT and MBT) were related closely to temperature, salinity, dissolved oxygen (DO), and chlorophyll-a of the seawater. This implies that seasonal changes of the water parameters controlled the degradation of TBT in seawater. The observed levels of BT compounds in both seawater and sediments were much higher than those required to induce toxic effects on marine organisms, suggesting that appropriate TBT control strategies should be taken in Kaohsiung Harbor.  相似文献   

16.
A method is presented for the determination of isocyanic acid (ICA), HNCO, in air samples as a di-n-butylamine (DBA) derivative. The method is based on sampling in midget impinger flasks containing 10 ml of 0.01 mol l-1 DBA in toluene. Quantification was made using liquid chromatography (LC) and electrospray mass spectrometry (MS) monitoring positive ions. The instrumental detection limit for the LC-MS was 10 fmol of ICA-DBA. ICA was generated by thermal decomposition of urea. A standard solution containing the DBA derivatives of ICA was prepared by collecting the emitted ICA in an impinger flask containing DBA. ICA in the reference solution was characterised by LC and time-of-flight (TOF) MS and quantified by LC chemiluminescent nitrogen detection (LC-CLND). The instrumental detection limit for the LC-CLND was 1 ng of nitrogen. ICA was emitted during thermal degradation of PFU resins and polyurethane (PUR) lacquers, from car metal sheets. ICA was the most dominant isocyanate and in PUR coating up to 8% of the total weight was emitted as ICA and for PFU resins up to 14% was emitted as ICA. When air samples were collected in an iron foundry during casting in sand moulds with furan resins, concentrations of ICA in the range 50-700 micrograms m-3 were found in the working atmosphere.  相似文献   

17.
The distribution of aqueous Tl(I)/Tl(III) as a function of light exposure and solution properties was studied by quantifying the oxidation states after separation with ion chromatography and on-line detection with ICP-MS. Ultraviolet irradiation of aqueous solutions containing 1 microg l(-1) Tl(III) and in equilibrium with the atmosphere increases the reduction rate. In systems with photoreduction of Fe(III)(aq) a quantitative oxidation of Tl(I)(aq) was observed, notably at low pH. The process is reversible, as indicated by formation of Tl(I) when the irradiated systems were kept in the dark. In systems with colloidal silica-stabilised ferrihydrite, UV irradiation also leads to oxidation of Tl(I)(aq), but not quantitatively. It is suggested that adsorption of thallium to the ferrihydrite determines the rate of oxidation. Detectable, but not quantitative, oxidation of Tl(I)(aq) took place when natural water samples with 1 microg l(-1) Tl(I)(aq) were exposed to either sunlight or UV-light. For these samples, the reduction was not quantitative when they were kept in the dark for 24 h. The results suggest that the light dependent iron cycle in fresh water systems strongly influences the redox state of thallium.  相似文献   

18.
The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg(-1) of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.  相似文献   

19.
Pyraoxystrobin, (E)-2-(2-((3-(4-chlorophenyl)-1-methyl-1H-pyrazole-5-yloxy)methyl)phenyl)-3-methoxyacrylate, is a newly developed strobilurin fungicide with high antifungal efficiency. It has high potential to enter soil environments that might subsequently impact surface and groundwater. Therefore, 14C-labeled pyraoxystrobin was used as a tracer to study the adsorption/desorption and migration behavior of this compound under laboratory conditions in three typical agricultural soils. The adsorption isotherms conformed with the Freundlich equation. Single factor analysis showed that organic matter content was the most important factor influencing the adsorption. The highest adsorption level was measured in soil with low pH and high organic carbon content. Once adsorbed, only 2.54 to 6.41% of the adsorbed compound could be desorbed. In addition, the mobility results from thin-layer chromatography and column leaching studies showed that it might be safe to use pyraoxystrobin as a fungicide without causing groundwater pollution from both runoff and leaching, which might be attributed to its strong hydrophobicity. High organic matter content enhanced pyraoxystrobin adsorption and desorption because of the rule of similarity (lipid solubility). In the column leaching study, 95.02% (minimum value) of the applied 14C remained within the upper 4.0-cm layer after 60 days.  相似文献   

20.
Polybrominated diphenyl ethers (PBDEs) have been reported in air, surface waters, suspended sediments, soil, sediment, fish, marine mammals, and bird eggs throughout Canada, from the St. Lawrence Estuary to the Strait of Georgia and the northernmost reaches of the Canadian Arctic. Canadian scientists have detected the presence of PBDEs in breast milk in every Canadian province. In fact, recent data on temporal trends strongly suggests that the concentrations of PBDEs are on the rise in the Canadian environment. These findings are similar to those reported in other nordic countries, and have prompted several countries to implement environmental monitoring programs. Among the key challenges currently facing Canada and other countries concerns how best to measure these chemicals in different matrices. In this paper, several analytical methods cited in the scientific literature for determining PBDE concentrations in different abiotic and biological matrices are reviewed. The critical criteria required for accurate determination of PBDEs in complex environmental matrices are discussed, including instrument sensitivity, reliability, potential interference's and the need for specialized instrumentation for the determination of compounds up to 975 Daltons. While a single analytical method that meets these and other criteria has not yet been perfected by scientists, GC/HRMS-based methods amenable to isotope dilution techniques warrant further refinement, and likely represent the best tools for future environmental monitoring programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号