首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The dynamics of density current over a bottom covered by macro-roughness elements were investigated by laboratory experiments and a computational model using large eddy simulations. The macro-roughness considered had significant size in comparison with the scale of density current. Five different roughness conditions were considered, namely flat bottom (for reference), half spheres, fine gravels, medium gravels, and large gravels. These bottom conditions had variations in roughness element size, shape, angularity, and spatial configuration. The density current was a lock-exchange type with a density difference of 1% between the two fluids initially separated by a gate in the middle. In the computational model, the roughness was captured using two different methods depending on the size of the roughness elements. For the large roughness elements, i.e., the half spheres and the medium and large gravels, an immersed boundary method was used to resolve the surface of each gravel, which was obtained through 3D laser scanning. The realistic and physically correct placement of these scanned objects in the simulation domain was achieved using a computer tool which can detect the collision of rigid bodies and simulate their dynamics. For the fine gravels, a rough wall function was used. The computational model was validated with the data measured in the experiments, including front position and velocity, and point velocity measurement within the current. The results show that density currents over macro-roughness have distinct behavior from those over a smooth boundary. The characteristics (size, angularity, and pavement pattern) of the macro-roughness play a key role in the current development. Macro-roughness significantly retards the front propagation and enhances entrainment.  相似文献   

3.
We propose, discuss and validate a theoretical and numerical framework for sediment-laden, open-channel flows which is based on the two-fluid-model (TFM) equations of motion. The framework models involve mass and momentum equations for both phases (sediment and water) including the interactive forces of drag, lift, virtual mass and turbulent dispersion. The developed framework is composed by the complete two-fluid model (CTFM), a partial two-fluid model (PTFM), and a standard sediment-transport model (SSTM). Within the umbrella of the Reynolds-Averaged Navier-Stokes (RANS) equations, we apply K–ε type closures (standard and extended) to account for the turbulence in the carrier phase (water). We present the results of numerical computations undertaken by integrating the differential equations over control volumes. We address several issues of the theoretical models, especially those related to coupling between the two phases, interaction forces, turbulence closure and turbulent diffusivities. We compare simulation results with various recent experimental datasets for mean flow variables of the carrier as well as, for the first time, mean flow of the disperse phase and turbulence statistics. We show that most models analyzed in this paper predict the velocity of the carrier phase and that of the disperse phase within 10% of error. We also show that the PTFM provides better predictions of the distribution of sediment in the wall-normal direction as opposed to the standard Rousean profile, and that the CTFM is by no means superior to the PTFM for dilute mixtures. We additionally report and discuss the values of the Schmidt number found to improve the agreement between predictions of the distribution of suspended sediment and the experimental data.  相似文献   

4.
In this work, a mathematical model on concentration distribution is developed for a steady, uniform open channel turbulent flow laden with sediments by incorporating the effect of secondary current through velocity distribution together with the stratification effect due to presence of sediments. The effect of particle-particle interaction at reference level and the effect of incipient motion probability, non-ceasing probability and pick-up probability of the sediment particles at reference concentration are taken into account. The proposed model is compared with the Rouse equation as well as verified with existing experimental data. Good agreement between computed value and experimental data indicates that secondary current influences the suspension of particles significantly. The direction and magnitude (strength) of secondary current lead to different patterns of concentration distribution and theoretical analysis shows that type II profile (where maximum concentration appears at significant height above channel bed surface) always corresponds to upward direction and greater magnitude of secondary current.  相似文献   

5.
The condition index (CI) of the clam Rangia cuneata was measured monthly at 8 stations in 2 substrate types and 3 salinity regimes in the James River estuary, Virginia, USA. CI was higher in clams from sand bottoms than from mud, and decreased in both substrata in fresher water. Values were lowest in early spring and at a maximum in early autumn, with a pronounced autumn peak in the sand substratum. This pattern coincided with the annual salinity cycle. A field experiment showed that some factor associated with the water overlying a sand or mud substratum, rather than the nature of the substratum itself, was important in determining CI. The hypothesis is presented that this factor may be the higher suspended solids concentrations measured immediately over mud bottoms.Virginia Institute of Marine Science Contribution No. 782.  相似文献   

6.
This paper presents a study of the waves generated by a solid block landslide moving along a horizontal boundary. The landslide was controlled using a mechanical system in a series of physical experiments, and laser-induced fluorescence measurements resolved both spatial and temporal variations in the free surface elevation. During its constant-velocity motion, the landslide transferred energy into ‘trapped’ offshore-propagating waves within a narrow frequency band. The wave trapping is demonstrated by investigating the wave dispersion characteristics using a two-dimensional Fourier Transform. The first of the trailing waves broke at Froude numbers greater than or equal to 0.625. The parametric dependence of the largest-amplitude waves and the potential energy within the wave field are discussed. The experimental results were compared to the predictions of an incompressible Navier–Stokes solver with and without turbulence models. The numerical model under-predicted the measured wave amplitudes, although it accurately predicted the measured wave phasing. The turbulent model more accurately predicted the shapes of the trailing waves. Both experimental and numerical results confirmed that investigations into wave generation by submerged objects moving at constant velocity should also consider the initial acceleration of the object, as this affects the overall evolution of the wave field. The applicability of the horizontal-boundary results to more realistic field scenarios is discussed.  相似文献   

7.
Some effects of food density on the growth and behaviour of plaice larvae   总被引:1,自引:0,他引:1  
T. Wyatt 《Marine Biology》1972,14(3):210-216
The effect of food density on the growth, survival, and swimming activity of plaice larvae (Pleuronectes platessa L.) was investigated under controlled laboratory conditions. Suboptimal food concentrations decrease the growth of the height of the body musculature relative to length, and increase the amount of time spent searching for food. Older larvae are able to withstand much longer periods without food than young larvae. On the basis of these experiments, it is suggested that food limitation in a larval plaice population is likely to result in a concave mortality curve.  相似文献   

8.
Sperry JH  Weatherhead PJ 《Ecology》2008,89(10):2770-2776
Drought can have severe ecological effects and global climate-change theory predicts that droughts are likely to increase in frequency and severity. Therefore, it is important that we broaden our understanding of how drought affects not only individual species, but also multitrophic interactions. Here we document vegetation and small-mammal abundance and associated patterns of Texas ratsnake (Elaphe obsoleta) body condition and survival before, during, and after a drought in central Texas, USA. Vegetation (grass and forbs) height and small-mammal capture rates were two times greater in wet years compared to the drought year. The decline of small mammals (the snakes' principal prey) during the drought was associated with a drop in ratsnake body condition, consistent with reduced food intake. During the drought, snake mortality also increased 24%. Although higher snake mortality was attributable to predation and road mortality rather than being a direct result of starvation, an increase in risk-prone behavior by foraging snakes probably increased their exposure to those other mortality factors. Drought conditions lasted only for 21 months, and vegetation, small-mammal abundance, and snake condition had returned to pre-drought levels within a year. Although estimates of snake population size were not available, it is likely that substantially more than a year was required for the population to return to its previous size.  相似文献   

9.
We present and discuss the results of a comprehensive study addressing the non-aerated region of the skimming flow in steep stepped spillways. Although flows in stepped spillways are usually characterized by high air concentrations concomitant with high rates of energy dissipation, the non-aerated region becomes important in small dams and/or spillways with high specific discharges. A relatively large physical model of such spillway was used to acquire data on flow velocities and water levels and, then, well-resolved numerical simulations were performed with a commercial code to reproduce those experimental conditions. The numerical runs benefited from the ability of using multi-block grids in a Cartesian coordinate system, from capturing the free surface with the TruVOF method embedded in the code, and from the use of two turbulence models: the k-e{k{-}\varepsilon} and the RNGk-e{k{-}\varepsilon} models. Numerical results are in good agreement with the experimental data corresponding to three volumetric flow rates in terms of the time-averaged velocities measured at diverse steps in the spillway, and they are in very satisfactory agreement for water levels along the spillway. In addition, the numerical results provide information on the turbulence statistics of the flow. This work also discusses important aspects of the flow, such as the values of the exponents of the power-law velocity profiles, and the characteristics of the development of the boundary layer in the spillway.  相似文献   

10.
Direct and indirect effects of ants on a forest-floor food web   总被引:1,自引:0,他引:1  
Moya-Laraño J  Wise DH 《Ecology》2007,88(6):1454-1465
Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG predator groups with disparate predatory behaviors, complexities that will have consequences for functioning of the forest-floor food web.  相似文献   

11.
Many factors, including climate, resource availability, and habitat diversity, have been proposed as determinants of global diversity, but the links among them have rarely been studied. Using structural equation modeling (SEM), we investigated direct and indirect effects of climate variables, host-plant richness, and habitat diversity on butterfly species richness across Britain, at 20-km grid resolution. These factors were all important determinants of butterfly diversity, but their relative contributions differed between habitat generalists and specialists, and whether the effects were direct or indirect. Climate variables had strong effects on habitat generalists, whereas host-plant richness and habitat diversity contributed relatively more for habitat specialists. Considering total effects (direct and indirect together), climate variables had the strongest link to butterfly species richness for all groups of species. The results suggest that different mechanistic hypotheses to explain species richness may be more appropriate for habitat generalists and specialists, with generalists hypothesized to show direct physiological limitations and specialists additionally being constrained by trophic interactions (climate affecting host-plant richness).  相似文献   

12.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

13.
D. Roberts 《Marine Biology》1972,16(2):119-125
The rate of uptake of Endosulfan by Mytilus edulis L. exposed to pesticide concentrations of 0.1, 0.5, and 1.0 mg/l, and its subsequent elution on removal to clean sea water, was investigated. Higher residue levels were recorded for mussels exposed to higher concentrations of the pesticide, but concentration factors were reduced. There was a rapid initial fall in tissue residue levels on transfer to clean sea water due, it is suggested, to elution of Endosulfan adsorbed on particulate matter assimilated in the gut. The spawning period was prolonged at higher concentrations and, at 1.0 mg/l, the onset of spawning was delayed, possibly due to interference with gamonic action. At 0.1 mg/l, the minor protraction of the spawning period may reflect the effect of experimental tank conditions. No seasonal trend was obvious, and there was an exaggeration of the expected fall in condition in mussels exposed to higher concentrations of Endosulfan. In controls, the expected seasonal trend was reduced.  相似文献   

14.
Plants engage in multiple, simultaneous interactions with other species; some (enemies) reduce and others (mutualists) enhance plant performance. Moreover, effects of different species may not be independent of one another; for example, enemies may compete, reducing their negative impact on a plant. The magnitudes of positive and negative effects, as well as the frequency of interactive effects and whether they tend to enhance or depress plant performance, have never been comprehensively assessed across the many published studies on plant-enemy and plant-mutualist interactions. We performed a meta-analysis of experiments in which two enemies, two mutualists, or an enemy and a mutualist were manipulated factorially. Specifically, we performed a factorial meta-analysis using the log response ratio. We found that the magnitude of (negative) enemy effects was greater than that of (positive) mutualist effects in isolation, but in the presence of other species, the two effects were of comparable magnitude. Hence studies evaluating single-species effects of mutualists may underestimate the true effects found in natural settings, where multiple interactions are the norm and indirect effects are possible. Enemies did not on average influence the effects on plant performance of other enemies, nor did mutualists influence the effects of mutualists. However, these averages mask significant and large, but positive or negative, interactions in individual studies. In contrast, mutualists ameliorated the negative effects of enemies in a manner that benefited plants; this overall effect was driven by interactions between pathogens and belowground mutualists (bacteria and mycorrhizal fungi). The high frequency of significant interactive effects suggests a widespread potential for diffuse rather than pairwise coevolutionary interactions between plants and their enemies and mutualists. Pollinators and mycorrhizal fungi enhanced plant performance more than did bacterial mutualists. In the greenhouse (but not the field), pathogens reduced plant performance more than did herbivores, pathogens were more damaging to herbaceous than to woody plants, and herbivores were more damaging to crop than to non-crop plants (suggesting evolutionary change in plants or herbivores following crop domestication). We discuss how observed differences in effect size might be confounded with methodological differences among studies.  相似文献   

15.
Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.  相似文献   

16.
Environmental Fluid Mechanics - Open channel flows subjected to a longitudinal transition in roughness, from bed friction to emergent cylinder drag and vice versa, are investigated experimentally...  相似文献   

17.
Group living in fish can provide benefits of protection from predators and some parasites, more efficient foraging for food, increased mating opportunities and enhanced energetic benefit when swimming. For riverine species, shoaling behaviour can be influenced by various environmental stressors, yet little is known how flow rate might influence the shoaling of diseased fish shoals. In view of the increasingly unpredictable flow rates in streams and rivers, this study aimed to assess the combined effect of flow condition and parasitism on the shoaling behaviour of a model fish species. Shoal size, shoal cohesion and time spent shoaling of female guppies Poecilia reticulata were compared when infected with the directly transmitted ectoparasite Gyrodactylus turnbulli under flow and static conditions. Flow condition was an important factor in influencing shoaling behaviour of guppies with the fish forming larger shoals in the absence of flow. When a shoal member was infected with G. turnbulli, shoal cohesion was reduced, but the magnitude of this effect was dependent on flow condition. In both flow and static conditions, bigger fish formed larger shoals than smaller counterparts. Future changes to stream hydrology with more frequent flooding and drought events will affect the shoaling tendency of fish. During high-flow events, diseased fish may not be able to keep up with shoal mates and therefore have a higher risk of predation. Additionally, these findings may be important for aquaria and farmed species where an increase in flow rate may reduce aggregation in fish.  相似文献   

18.

Background

Macroinvertebrates in aquatic ecosystems are repeatedly exposed to pesticides during their life cycle. Effects of consecutive exposure during different life stages and possible synergistic effects are not addressed in the standardized hazard assessment. The present study investigated two environmentally relevant exposure scenarios in batch (microcosm) and artificial indoor stream (mesocosm) experiments using the larvae of the mayfly Rhithrogena semicolorata (grazer) and natural aufwuchs. Grazers were analysed regarding growth, physiological condition, and drift behaviour, while the aufwuchs was analysed in terms of biomass using the particulate organic carbon as well as the chlorophyll a content. The aim was to reveal direct and indirect effects of an herbicide exposure during autumn on juvenile grazers and an insecticide exposure during spring on semi-juvenile grazers.

Results

Direct and indirect effects were found in both exposure scenarios at environmentally relevant concentrations. In the herbicide exposure scenario with terbutryn, clear direct effects on the aufwuchs community with a LOEC of 0.38 µg L?1 were found. Effect levels of grazers due to indirect effects were equal, with the overnight drift being the most sensitive grazer endpoint. In the insecticide exposure scenario, clear lethal and sub lethal effects of lambda-cyhalothrin were evident. Derived LC50 values for the artificial indoor stream and batch experiment were 2.42 µg g?1 OC (69 days) and 1.2 µg g?1 OC (28 days), respectively. Sub lethal effects in terms of increased drift as well-reduced growth and triglyceride levels were found at concentrations of 1.4 and 0.09 µg g?1 OC (LOECs). These results were confirmed by the batch experiment, which revealed effect values in the similar range. Finally, a clear indirect effect of the insecticide on the aufwuchs was evident in the batch experiment with an LOEC at 0.9 µg g?1 OC.

Conclusion

Toxicity Exposure Ratios calculated with the derived effect values indicate a risk for the investigated grazer by both pesticides. Moreover, observed indirect effects during the herbicide exposure seem to be able to affect the grazers during a second exposure with an insecticide, due to reduced physiological conditions. We suggest further research with time-shifted exposure scenarios to gain a better understanding of the complex interactions of pesticides with the life cycle and the food webs of macroinvertebrates.
  相似文献   

19.
Environmental Fluid Mechanics - This numerical study investigates the evolution of constant-flux high density fluid introduced vertically to a rotational low-density ambient through a circular...  相似文献   

20.
Mammalian life histories suggest that maternal body condition and social dominance (a measure of resource-holding potential) influence the physical and social development of offspring, and thereby their reproductive success. Predictably, a mother should produce that sex of offspring which contributes most to her fitness (as measured by the number of her grandchildren) and that she is best able to raise within the constraints imposed by her condition, social rank, and environment. Such combined effects were investigated by monitoring variations in body condition (weight) and behavior of female toque macaques, Macaca sinica of Sri Lanka, in a changing forest environment over 18 years. Maternal rank, by itself, had no influence on offspring sex, but did affect maternal body condition. The combined effects of rank and condition indicated the following: mothers in robust condition bore more sons, whereas those in moderate condition bore more daughters, but both effects were expressed most strongly among mothers of high rank. Where the consequences of low rank were felt most acutely, as shown by poor condition, mothers underproduced daughters. Environmental quality directly influenced rank and condition interactions, and thus sex ratios. These relationships, and data from other mammals suggest an empirically and theoretically consistent pattern of sex allocation in mammals. New predictions integrate effects, proposed by Trivers and Willard, that are rooted in male mate competition, which is universal among polygynous mammals, with those of local resource competition (and/or female reproductive competition), which are not universal and differ in intensity between the socioecologies and local environments of different species. Received: 30 May 1998 / Accepted after revision: 29 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号