首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CO2SINK pilot project at Ketzin is aimed at a better understanding of geological CO2 storage operation in a saline aquifer. The reservoir consists of fluvial deposits with average permeability ranging between 50 and 100 mDarcy. The main focus of CO2SINK is developing and testing of monitoring and verification technologies. All wells, one for injection and two for observation, are equipped with smart casings (sensors behind casing, facing the rocks) containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT). The in-hole Gas Membrane Sensors (GMS) observed the arrival of tracers and CO2 with high temporal resolution. Geophysical monitoring includes Moving Source Profiling (MSP), Vertical Seismic Profiling (VSP), crosshole, star and 4-D seismic experiments. Numerical models are benchmarked via the monitoring results indicating a sufficient match between observation and prediction, at least for the arrival of CO2 at the first observation well. Downhole samples of brine showed changes in the fluid composition and biocenosis. First monitoring results indicate anisotropic flow of CO2 coinciding with the “on-time” arrival of CO2 at observation well one (Ktzi 200) and the later arrival at observation well two (Ktzi 202). A risk assessment was performed prior to the start of injection. After one year of operations about 18,000 t of CO2 were injected safely.  相似文献   

2.
The injection of CO2 at the Ketzin storage site and the chemical detection of its arrival in the observation well allowed testing of different numerical simulation codes. ECLIPSE 100 (E100, black-oil simulator), ECLIPSE 300 (E300, compositional CO2STORE) and MUFTE-UG were used for predictive modelling applying a constant injection rate of 1 kg s?1 CO2 and for a history match applying the actual variable injection rate which ranged from 0 to 0.7 kg s?1 and averaged 0.23 kg s?1. The geological model applied, is based on all available geophysical and geological information and has been the same for all programs.The results of the constant injection regime show a good agreement among the programs with a discrepancy of 21–33% for the CO2 arrival times. However, it is determined from the comparison of the cumulative mass of CO2 at the time of CO2 arrival that the injection regime is an important factor for the accurate prediction of CO2 migration within a saline aquifer. Comparing the actual variable injection regime with the simulations applying a constant injection rate the results are relatively inaccurate.Regarding the actual variable injection regime, which was evaluated using all three simulators, the computational results show a good agreement with the data actually measured at the first observation well. Here, the calculated arrival times exceeded the actual ones by 8.1% (E100), 9.2% (E300) and 17.7% (MUFTE-UG).It can be concluded that irrespective of the deviations of the simulations, due to combinations of different codes and slight differences in input parameters, all three programs are well equipped to give a reliable estimate of the arrival of CO2. Deviations in the results mainly occur due to different input data and grid size choices done by the different modelling teams working independently of each other. Deviations of the simulations results compared to the actual CO2 arrival time result from uncertainties in the implementation of the geological model, which was set up based on well log data and analogue studies.  相似文献   

3.
Numerical modelling of multiphase flow is an essential tool to ensure the viability of long-term and safe CO2 storage in geological formations. Uncertainties arising from the heterogeneity of the formation and lack of knowledge of formation properties need to be assessed in order to create a model that can reproduce the data available from monitoring. In this study, we investigated the impact of unknown spatial variability in the petrophysical properties within a sandy channel facies of a fluviatile storage formation using stochastic methods in a Monte Carlo approach. The stochastic method has been applied to the Ketzin test site (CO2SINK), and demonstrates that the deterministic homogeneous model satisfactorily predicts the first CO2 arrival time at the Ketzin site. The equivalent permeability was adjusted to the injection pressure and is in good agreement with the hydraulic test. It has been shown that with increasing small-scale heterogeneity, the sharpness of the CO2 front decreases and a greater volume of the reservoir is affected, which is also seen in an increased amount of dissolved CO2. Increased anisotropy creates fingering effects, which result in higher probabilities for earlier arrival times. Generally, injectivity decreases with increasing heterogeneity.  相似文献   

4.
The onshore CO2-storage site Ketzin consists of one CO2-injection well and two observation wells. Hydraulic tests revealed permeabilities between 50 and 100 mD for the sandstone rock units. The designated injection well Ktzi 201 showed similar production permeability. After installation of the CO2-injection string, an injection test with water yielded a significantly lower injectivity of 0.002 m3/d kPa, while the observation wells showed an injection permeability in the same range as the productivity. Several possible reasons for the severe decline in injectivity are discussed. Acidification of the reservoir interval, injection at high wellhead pressure, controlled mini-fractures and back-production of the well are discussed to remove the plugging material to re-establish the required injectivity of the well. It has been decided to perform a nitrogen lift and analyse the back-produced fluids. Initially during the lift, the back-produced fluids were dark-black. Chemical and XRD analyses proved that the black solids consisted mainly of iron sulphide. Sulphate-reducing bacteria (SRB) were detected in fluid samples with up to 106 cells/ml by fluorescent in situ hybridisation (FISH) indicating that the formation of iron sulphide was caused by bacterial activity. Organic compounds within the drilling mud and other technical fluids were likely left during the well completion process, thus providing the energy source for strong proliferation of bacteria. During the lift, the fraction of SRB in the whole bacterial community decreased from approximately 32% in downhole samples to less than 5%. The lift of Ktzi 201 succeeded in the full restoration of the well productivity and injectivity. Additionally, the likely energy source of the SRB was largely removed by the lifting, thus ensuring the long-term preservation of the injectivity.  相似文献   

5.
To test the injection behaviour of CO2 into brine-saturated rock and to evaluate the dependence of geophysical properties on CO2 injection, flow and exposure experiments with brine and CO2 were performed on sandstone samples of the Stuttgart Formation representing potential reservoir rocks for CO2 storage. The sandstone samples studied are generally fine-grained with porosities between 17 and 32% and permeabilities between 1 and 100 mD.Additional batch experiments were performed to predict the long-term behaviour of geological CO2 storage. Reservoir rock samples were exposed over a period of several months to CO2-saturated reservoir fluid in high-pressure vessels under in situ temperature and pressure conditions. Petrophysical parameters, porosity and the pore radius distribution were investigated before and after the experiments by NMR (Nuclear Magnetic Resonance) relaxation and mercury injection. Most of the NMR measurements of the tested samples showed a slight increase of porosity and a higher proportion of large pores.  相似文献   

6.
7.
Global warming is a result of increasing anthropogenic CO2 emissions, and the consequences will be dramatic climate changes if no action is taken. One of the main global challenges in the years to come is therefore to reduce the CO2 emissions.Increasing energy efficiency and a transition to renewable energy as the major energy source can reduce CO2 emissions, but such measures can only lead to significant emission reductions in the long-term. Carbon capture and storage (CCS) is a promising technological option for reducing CO2 emissions on a shorter time scale.A model to calculate the CO2 capture potential has been developed, and it is estimated that 25 billion tonnes CO2 can be captured and stored within the EU by 2050. Globally, 236 billion tonnes CO2 can be captured and stored by 2050. The calculations indicate that wide implementation of CCS can reduce CO2 emissions by 54% in the EU and 33% globally in 2050 compared to emission levels today.Such a reduction in emissions is not sufficient to stabilize the climate. Therefore, the strategy to achieve the necessary CO2 emissions reductions must be a combination of (1) increasing energy efficiency, (2) switching from fossil fuel to renewable energy sources, and (3) wide implementation of CCS.  相似文献   

8.
A numerical study was conducted to predict pCO2 change in the ocean on a continental shelf by the leakage of CO2, which is originally stored in the aquifer under the seabed, in the case that a large fault connects the CO2 reservoir and the seabed by an earthquake or other diastrophism. The leakage rate was set to be 6.025 × 10−4 kg/m2/sec from 2 m × 100 m fault band, which corresponds to 3800 t-CO2/year, referring to the monitored seepage rate from an existing EOR field. The target space in this study was limited to the ocean above the seabed, the depth of which was 200 or 500 m. The computational domain was idealistically rectangular with the seabed fault-band perpendicular to the uniform flow. The CO2 takes a form of bubbles or droplets, depending on the depth of water, and their behaviour and dissolution were numerically simulated during their rise in seawater flow. The advection–diffusion of dissolved CO2 was also simulated. As a result, it was suggested that the leaked CO2 droplets/bubbles all dissolve in the seawater before spouting up to the atmosphere, and that the increase in pCO2 in the seawater was smaller than 500 μ atm.  相似文献   

9.
The paper presents a methodology for CO2 chain analysis with particular focus on the impact of technology development on the total system economy. The methodology includes the whole CO2 chain; CO2 source, CO2 capture, transport and storage in aquifers or in oil reservoirs for enhanced oil recovery. It aims at supporting the identification of feasible solutions and assisting the selection of the most cost-effective options for carbon capture and storage. To demonstrate the applicability of the methodology a case study has been carried out to illustrate the possible impact of technology improvements and market development. The case study confirms that the CO2-quota price to a large extent influence the project economy and dominates over potential technology improvements. To be economic feasible, the studied chains injecting the CO2 in oil reservoirs for increased oil production require a CO2-quota price in the range of 20–27 €/tonne CO2, depending on the technology breakthrough. For the chains based on CO2 storage in saline aquifers, the corresponding CO2-quota price varies up to about 40 €/tonne CO2.  相似文献   

10.
CO2 storage capacity estimation: Methodology and gaps   总被引:3,自引:0,他引:3  
Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales—in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers.  相似文献   

11.
CO2 capture and geological storage (CCS) is considered as a viable option to mitigate greenhouse gas emissions during the transition phase towards the use of clean and renewable energy. This paper concentrates on the transport of CO2 between source (CO2 capture at plants) and sink (geological storage reservoirs). In the cost estimation of CO2 transport, the pipeline diameter plays an important role. In this respect, the paper reviews equations that were used in several reports on CO2 pipeline transport. As some parameters are not taken into account in these equations, alternative formulas are proposed which calculate the proper inner diameter size based on flow rate, pressure drop per unit length, CO2 density, CO2 viscosity, pipeline material roughness and topographic height differences (the Darcy–Weisbach solution) and, in addition, on the amount and type of bends (the Manning solution). Comparison between calculated diameters using the reviewed and the proposed equations demonstrate the important influence of elevation difference (which is not considered in the reviewed equations) and pipeline material roughness-related factor on the calculated diameter. Concerning the latter, it is suggested that a Darcy–Weisbach roughness height of 0.045 mm better corresponds to a Manning factor of 0.009 than higher Manning values previously proposed in literature. Comparison with the actual diameter of the Weyburn pipeline confirms the accuracy of the proposed equations. Comparison with other existing CO2 pipelines (without pressure information) indicate that the pipelines are designed for lower pressure gradients than 25 Pa/m or for (future) higher flow rates. The proposed Manning equation is implemented in an economic least-cost route planner in order to obtain the best economic solution for pipeline trajectory and corresponding diameter.  相似文献   

12.
Deep saline aquifers have large capacity for geological CO2 storage, but are generally not as well characterized as petroleum reservoirs. We here aim at quantifying effects of uncertain hydraulic parameters and uncertain stratigraphy on CO2 injectivity and migration, and provide a first feasibility study of pilot-scale CO2 injection into a multilayered saline aquifer system in southwest Scania, Sweden. Four main scenarios are developed, corresponding to different possible interpretations of available site data. Simulation results show that, on the one hand, stratigraphic uncertainty (presence/absence of a thin mudstone/claystone layer above the target storage formation) leads to large differences in predicted CO2 storage in the target formation at the end of the test (ranging between 11% and 98% of injected CO2 remaining), whereas other parameter uncertainty (in formation and cap rock permeabilities) has small impact. On the other hand, the latter has large impact on predicted injectivity, on which stratigraphic uncertainty has small impact. Salt precipitation at the border of the target storage formation affects CO2 injectivity for all considered scenarios and injection rates. At low injection rates, salt is deposited also within the formation, considerably reducing its availability for CO2 storage.  相似文献   

13.
Climate change is being caused by greenhouse gases such as carbon dioxide (CO2). Carbon capture and storage (CCS) is of interest to the scientific community as one way of achieving significant global reductions of atmospheric CO2 emissions in the medium term. CO2 would be captured from large stationary sources such as power plants and transported via pipelines under high pressure conditions to underground storage. If a downward leakage from a surface transportation system module occurs, the CO2 would undergo a large temperature reduction and form a bank of “dry ice” on the ground surface; the sublimation of the gas from this bank represents an area source term for subsequent atmospheric dispersion, with an emission rate dependent on the energy balance at the bank surface. Gaseous CO2 is denser than air and tends to remain close to the surface; it is an asphyxiant, a cerebral vasodilator and at high concentrations causes rapid circulatory insufficiency leading to coma and death. Hence a subliming bank of dry ice represents safety hazard. A model is presented for evaluating the energy balance and sublimation rate at the surface of a solid frozen CO2 bank under different environmental conditions. The results suggest that subliming gas behaves as a proper dense gas (i.e. it remains close to the ground surface) only for low ambient wind speeds.  相似文献   

14.
Ultrasonic experiments were undertaken on CO2 flooded sandstone core samples, both synthetic sandstones and core plugs from the CRC1 CO2 injection well in the Otway Basin, Victoria, South Eastern. Australia. The aim of these laboratory tests was to investigate the effects of CO2 as a pore fluid on the seismo-acoustic response of the sandstone and ultimately to provide an indication of the sensitivity of time-lapse seismic imaging of the eventual CO2/CH4 plume in the Otway, Waarre C formation.The synthetic sandstones were manufactured using both a proprietary calcium in situ precipitation (CIPS) process and a silica cementing technique. Samples were tested in a computer controlled triaxial pressure cell where pore pressures can be controlled independently of the confining pressures. The pressure cell is equipped with ultrasonic transducers housed in the loading platens. Consequently, effective pressures equivalent to those expected in the reservoir can be applied while ultrasonic testing is undertaken. Both compressional, P and shear waves, S were recorded via a digital oscilloscope at a range of effective pressure steps. Pore pressures were varied from 4 MPa to 17 MPa to represent both the gaseous and liquid phase regions of the CO2 phase diagram. Similar experiments were conducted on core plugs from the Waarre C reservoir horizon obtained from the CRC1 injection well, but with an intervening brine-saturated step and in some cases with a CO2/CH4 mix of 80%/20% molar fraction which is representative of the field situation. However, the pore pressure in these experiments was held at 4 MPa. Finally, acoustic impedances and reflection coefficients were calculated for the reservoir using Gassmann theory and the implications for imaging the CO2 plume is discussed.  相似文献   

15.
With thermogravimetric apparatus (TGA), X-ray diffraction (XRD) and barium sulfate gravimetric methods, the carbonation reactivities of K2CO3 and K2CO3/Al2O3 in the simulated flue gases with SO2 are investigated and the reaction equations are inferred. Results show that there are KHCO3 and K2SO3 generated. The generation K2SO3 reduces the utilization ratio of the sorbent. H2O may accelerates the sulfation reaction of AR K2CO3 as K4H2(CO3)3·1.5H2O is generated in the reaction among K2CO3, SO2 and H2O. K2SO3 is directly generated from sulfation reaction of K2CO3/Al2O3, because there are K2CO3·1.5H2O and K2SO3 generated in the reaction among K2CO3/Al2O3, SO2 and H2O. K2CO3·1.5H2O does not react with SO2, and K2CO3·1.5H2O/Al2O3 reacts with SO2 slowly. Compare with the reaction process without H2O pretreatment, the reaction rates of KAl30 increased after H2O pretreatment and the failure ratio is about a half of that without H2O pretreatment. So, K2CO3/Al2O3 shows good carbonation and anti-sulfation characteristic after H2O pretreatment.  相似文献   

16.
Alberta is the province with the largest CO2 emissions in Canada, with approximately two-thirds of emissions originating from large stationary sources. Due to the fortuitous association of large CO2 sources with the storage capacity offered by the underlying Alberta basin, it is expected that large-scale CO2 geological storage in Canada will occur in Alberta first, and both levels of governments are contemplating measures to facilitate implementation. A review of the current provincial and federal legislation and regulations presented in this paper indicates that the existing legal and regulatory regime is reasonably sufficient, with some modifications, to accommodate the active injection phase of CO2 capture and storage (CCS) operations, and the early takers of this new technology. However, governments in Alberta and Canada, and likely everywhere, need to address several pressing issues dealing mainly with the CCS post-operational phase. These issues, reviewed in this paper from an Alberta and Canadian perspective, fall into several categories: jurisdictional, property (ownership), regulatory and liability. Because Alberta is a landlocked province, matters relating to CO2 storage under the seabed will not be addressed here except when discussing matters of jurisdiction and CO2 classification. Possible models for post-injection liability transfer to the state are also presented. Although this review is focused on western Canada conditions, the issues are broad enough to be of interest in other jurisdictions, which may also adopt parts of the legal and regulatory framework that is quite well developed in Alberta.  相似文献   

17.
In the carbon capture and storage (CCS) chain, transport and storage set different requirements for the composition of the gas stream mainly containing carbon dioxide (CO2). Currently, there is a lack of standards to define the required quality for CO2 pipelines. This study investigates and recommends likely maximum allowable concentrations of impurities in the CO2 for safe transportation in pipelines. The focus is on CO2 streams from pre-combustion processes. Among the issues addressed are safety and toxicity limits, compression work, hydrate formation, corrosion and free water formation, including the cross-effect of H2S and H2O and of H2O and CH4.  相似文献   

18.
Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO2 geologic storage that predicts not only CO2 migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO2 injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO2 injection on near-surface aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km × 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO2 was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO2 plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.  相似文献   

19.
This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the domain Bacteria that represented approximately 60% to 90% of the total cell number, with Proteobacteria and Firmicutes as the most abundant phyla comprising up to 47% and 45% of the entire population, respectively. Both the total cell counts as well as the counts of the specific physiological groups revealed quantitative and qualitative changes after CO2 arrival. Our study revealed temporal outcompetition of sulphate-reducing bacteria by methanogenic archaea. In addition, an enhanced activity of the microbial population after five months CO2 storage indicated that the bacterial community was able to adapt to the extreme conditions of the deep biosphere and to the extreme changes of these atypical conditions.  相似文献   

20.
The dissolution of CO2 from a CO2 lake with and without a hydrate layer, located at a flat bottom at 3000 m depth has been modeled using the MIT General Circulation Model coupled with the General Ocean Turbulence Model (GOTM). The vertical turbulent mixing scheme takes into account density effects and should give more realistic results for the CO2 plume than previously used constant eddy diffusivity models. The introduction of a third direction gives qualitatively different results for the spreading of the CO2 plume than previous 2D results. The dissolution rate and near field dissolved CO2 concentrations approach a steady state for a given far field ocean current within less than a day. The dissolution rate is highly dependent on the velocity of the ambient current and is reduced with 1.6 when a hydrate layer is introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号