共查询到16条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
废水处理工艺中同步硝化/反硝化研究进展 总被引:16,自引:0,他引:16
与传统脱氮工艺相比,同步硝化/反硝化(SND)工艺由于具有可降低能耗,减少基建费用等明显的优点,正受到越来越多的关注。在广泛查阅近期国内外相关研究成果的基础上,结合目前的工作,从同步硝化/反硝化现象发生的机理及工艺控制因素两个方面进行分析和阐述,并简要介绍了这一课题未来的研究方向。指出反应器溶氧不均、活性污泥絮凝颗粒中缺氯微环境的形成以及某些好氯反硝化菌和异养硝化菌的存在是同步硝化/反硝化现象的主要原因。同步硝化/反硝化的过程往往伴随着亚硝酸盐的积累现象,部分同步硝化/反硝化过程很可能是通过亚硝酸盐途径进行的。对于同步硝化/反硝化的工艺控制,目前主要通过控镧碳源、活性污泥絮凝颗粒的大小、溶解氯、以及氯化还原电极电位(ORP)进行的。反应中可溶性COD(SCOD)的含量对于反硝化过程的进行具有重要的意义:碳源投加方式的改变,可改善同步硝化/反硝化的效果。絮凝颗粒的密度,尺寸与溶解氯的水平共同影响了絮体内部缺氧微环境的形成:同时在工艺过程中,控制溶解氯水平的变化可以取得较好的脱氮效果。对于氯化还原电极电位(ORP)控制的范围往往取决于污水的性质,同时也可结合其他一些指标(如pH、释放气体中NO浓度)作为综合的控制手段。 相似文献
9.
同步硝化反硝化(SND)是目前国内外污水脱氮技术研究领域的新热点.基于其高效低能耗特性,从宏观环境理论、微环境理论和生物学理论方面探讨同步硝化反硝化的脱氮机理,分析有机碳源、溶解氧、活性污泥絮体结构和pH值等因素对同步硝化反硝化所产生的影响.提出有待进一步解决的问题及深入研究的技术,从而达到节能降耗并提高工艺稳定性的目的. 相似文献
10.
11.
污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略 总被引:3,自引:3,他引:3
采用SBR反应器考察了短程硝化反硝化和同步硝化反硝化脱氮过程中N_2O的释放.通过实时控制策略实现了短程硝化反硝化生物脱氮,亚硝化率可维持在90%以上.在溶解氧水平为0.5、 1.0、 1.5和2.0 mg/L条件下,考察N_2O的释放和亚硝化率的变化情况.结果表明,溶解氧1.5 mg/L时最有利于维持稳定的亚硝化率,同时N_2O逸出量最小,每去除1 g氨氮释放N_2O 0.06 g;在碳纤维填料SBR反应器中,通过维持较低溶解氧水平和分段投加碳源的运行方式成功实现了同步硝化反硝化,同步硝化反硝化率在79%以上.在溶解氧水平为0.2、 0.4、 1.0和1.5 mg/L时,考察N_2O的逸出情况.结果表明,溶解氧在1.0 mg/L时最有利于控制N2O的释放,每去除1g氨氮释放N2O 0.021 g,其N_2O释放量仅为短程硝化反硝化的1/3. 相似文献
12.
13.
14.
15.
微气泡曝气生物膜反应器同步硝化反硝化研究 总被引:1,自引:5,他引:1
同步硝化反硝化(SND)是废水处理中的新型生物脱氮工艺,和传统生物脱氮工艺相比具有显著的应用优势.本研究采用微气泡曝气固定床生物膜反应器,研究了SND过程中污染物去除效果并检测了生物膜功能菌群的变化情况.结果表明,在微气泡曝气固定床生物膜反应器内可以实现同步硝化反硝化,通过提高进水COD负荷和C∶N比,降低溶解氧(DO)浓度,同时增加填料床层孔隙率,可以改善SND效果.当进水COD负荷和总氮(TN)负荷为0.86 kg·(m3·d)-1和0.10 kg·(m3·d)-1,且填料床层孔隙率为81%时,COD和TN的去除率分别为97.6%和70.2%,实现了COD和TN的同步高效去除;同时,微气泡曝气对氧传质的强化作用使得氧利用率高达91.8%.此外,生物膜活性和硝化及反硝化功能菌群的变化,与反应器COD、氨氮和TN去除能力的变化基本一致. 相似文献