首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Streambed sediment and subsurface floodplain soil were sampled for elemental analyses from 15 locations in river basins of north-central Mongolia during August 2010. Our primary objective was to conduct a reconnaissance-level assessment of potential inputs of toxicologically important metals and metalloids to Lake Baikal, Russia, that might originate from mining and urban activities within tributaries of the Selenga River in Mongolia. Samples were collected in triplicate from all sites, then dried, and sieved to <2 mm for analysis by portable X-ray florescence spectroscopy and by inductively coupled plasma mass spectrometry after digestion with concentrated nitric and hydrochloric acids. Arsenic, copper, and mercury were greatly elevated in sediment and floodplain soil collected from tributary streams located near two major mining operations. Lead and zinc were moderately elevated in streambed sediment and in floodplain soil obtained from a small tributary in the capital city of Ulaanbaatar, but those concentrations were considerably less than probable effects benchmarks. Historical and possibly present mining activities have led to considerable metal contamination in certain tributaries of the Orkhon River in north-central Mongolia; however, metals originating from those sources did not appear to be accumulating in sediments at our downstream-most sampling sites located near the border between Mongolia and Russia.  相似文献   

2.
The vertical profiles, contamination levels, and potential ecological risks of mercury and arsenic were studied from the sediment cores of seven typical intertidal zones, including the Liaohe River Estuary, the Jianhe River Estuary, the Dagu River Estuary, Yancheng Shoal, the Dongtan Yangtze River Estuary, Hangzhou Bay, and the Pearl River Estuary. Marine sediment quality standards, the threshold effect level (TEL), and the probable effect level (PEL) were used as guidelines to evaluate sediment quality. In addition, the geo-accumulation index (Igeo) and potential ecological risk index (\( {E}_r^i \)) were used to assess contamination and potential ecological risks from mercury and arsenic. The results showed that the Pearl River Estuary was moderately polluted by mercury and represented a high potential ecological risk, while other areas were uncontaminated or mildly contaminated with low or moderate potential ecological risks. The Pearl River Estuary was mildly polluted by arsenic and represented a mild potential ecological risk, while other areas were unpolluted and also posed a mild potential ecological risk.  相似文献   

3.
Mercury contamination in the water bodies of developing countries is a serious concern due to its toxicity, persistence, and bioaccumulation. Vembanad, a tropical backwater lake situated at the southwest coast of India, is the largest Ramsar site in southern India. The lake supports thousands of people directly and indirectly through its resources and ecosystem services. It is highly polluted with toxic pollutants such as heavy metals, as it receives effluent discharges from Kerala’s major industrial zone. In the present study, water, pore water, sediment, and fish samples collected from Vembanad Lake were analysed for total mercury (THg) and methyl mercury (MHg) contents. The maximum concentrations of THg and MHg in surface water samples were31.8 and 0.21 ng/L, respectively, and those in bottom water samples were 206 and 1.22 ng/L, respectively. Maximum concentration of THg in surface sediment was observed during monsoon season (2850 ng/g) followed by that in the pre-monsoon season (2730 ng/g) and the post-monsoon season (2140 ng/g). The highest sediment concentration of MHg (202.02 ng/g) was obtained during monsoon season. The spatial variation in the mercury contamination clearly indicates that the industrial discharge into the Periyar River is a major reason for pollution in the lake. The mercury pollution was found to be much higher in Vembanad Lake than in other wetlands in India. The bioaccumulation was high in carnivorous fishes, followed by benthic carnivores. The THg limit in fish for human consumption (0.5 mg/kg dry wt.) was exceeded for all fish species, except for Glossogobius guiris and Synaptura orientalis. The concentration of THg was five times higher in Megalops cyprinoides and four times higher in Gazza minuta. Significant variation was observed among species with different habits and habitats. Overall, risk assessment factors showed that the mercury levels in the edible fishes of Vembanad Lake can pose serious health impacts to the human population.  相似文献   

4.
A multidisciplinary approach has been adopted in order to investigate the bioaccumulation of metals and organometals in macrobenthic populations. A complete method coupling a sampling strategy and classification of benthic organisms with a performant analytical procedure for the analysis of both metals and organometals has been developed. A single sample preparation method using a TMAH extraction and species specific isotope dilution makes it possible to analyse metals and organometals in the same extract, which is especially interesting for situations where only a limited amount of sample is available. Low detection limits have been obtained in the range of 12-250 pg g(-1) for mercury and butyltin compounds and 0.4-50 ng g(-1) for metals with good precision (1-10% RSD) even for a very low mass of sample (0.02 g). This method has been applied for monitoring contamination and bioaccumulation of metals and organometals as well as the biodiversity and trophic structure of the macrobenthic population of the Adour Estuary (South-West, France). The benthic macrofauna diversity indicates that inner estuarine stations are moderately polluted whereas outer estuarine stations are less impacted. However, metals concentrations in both sediment and benthic biomass do not change drastically between stations. Moreover, the bioaccumulation has been determined in relation to the feeding guild of benthic organisms. The results demonstrate that higher bioaccumulation is generally observed for deposit feeders directly impacted by sediment contamination compared to suspensive feeders and predators. Biomagnification along the trophic levels was highlighted for MMHg but no significant trend was observed for the other metallic compounds.  相似文献   

5.
This study was performed to elucidate the distribution, concentration trend and possible sources of total mercury (Hg(T)) and methylmercury (MeHg) in sediment cores (<63 μm particle size; n?=?75) of Sundarban mangrove wetland, northeastern part of the Bay of Bengal, India. Total mercury was determined by atomic absorption spectrometry (AAS) in a Leco AMA 254 instrument and MeHg by gas chromatography-atomic fluorescence spectrometry (GC-AFS). A wide range of variation in Hg(T) (0.032-0.196 μg g(-1) dry wt.) as well as MeHg (0.04-0.13 ng g(-1) dry wt.) concentrations revealed a slight local contamination. The prevalent low Hg(T) levels in sediments could be explained by sediment transport by the tidal Hugli (Ganges) River that would dilute the Hg(T) values via sediment mixing processes. A broader variation of MeHg proportions (%) were also observed in samples suggesting that other environmental variables such as organic carbon and microbial activity may play a major role in the methylation process. An overall elevated concentration of Hg(T) in surface layers (0-4 cm) of the core is due to remobilization of mercury from deeper sediments. Based on the index of geoaccumulation (I (geo)) and low effects-range (ER-L) values, it is considered that the sediment is less polluted by Hg(T) and there is less ecotoxicological risk. The paper provides the first information of MeHg in sediments from this wetland environment and the authors strongly recommend further examination of Hg(T) fluxes for the development of a detailed coastal MeHg model. This could provide more refine estimates of a total flux into the water column.  相似文献   

6.
The Low Carbon Development Strategy proposed in June 2009 by the government of Guyana in response to the Reducing Emissions from Deforestation and Forest Degradation in Developing Countries program has triggered evaluation of forest-related activities, thereby acting as a catalyst for improvements in Guyana's small- to medium-scale gold mining industry. This has also shed light on areas committed to conservation, something that has also been handled by Non Governmental Organizations. This paper compares water quality and mercury concentrations in sediment from four main areas in Guyana, two that are heavily mined for gold using mercury amalgamation methods (Arakaka and Mahdia) and two that are considered conservation areas (Iwokrama and Konashen). Fifty-three sediment and soil mercury loadings ranged from 29 to 1,200 ng/g and averaged 215 ± 187 ng/g for all sites with similar averages in conservation and mining areas. Sediment loadings are within the range seen in French Guiana and Suriname, but conservation area samples had higher loadings than the corresponding uncontaminated baselines. Type of ore and location in the mining process seemed to influence mercury loadings. Mercury sediment loadings were slightly positively correlated with pH (correlation coefficient = 0.2; p value < 0.001) whereas no significant correlations were found with dissolved oxygen or turbidity.  相似文献   

7.
Soil nitrifiers have been showing an important role in assessing environmental pollution as sensitive biomarkers. In this study, the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in long-term industrial waste effluent (IWE) polluted soils. Three different IWE polluted soils characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) were collected in triplicate along Mahi River basin, Gujarat, Western India. Quantitative numbers of ammonia monooxygenase α-subunit (amoA) genes as well as 16S rRNA genes indicated apparent deleterious effect of IWE on abundance of soil AOA, AOB, bacteria, and archaeal populations. Relatively, AOB was more abundant than AOA in the highly contaminated soil R3, while predominance of AOA was noticed in uncontaminated (R1) and moderately contaminated (R2) soils. Soil potential nitrification rate (PNR) significantly (P?<?0.05) decreased in polluted soils R2 and R3. Reduced diversity accompanied by apparent community shifts of both AOB and AOA populations was detected in R2 and R3 soils. AOB were dominated with Nitrosospira-like sequences, whereas AOA were dominated by Thaumarchaeal “group 1.1b (Nitrososphaera clusters).” We suggest that the significant reduction in abundance and diversity AOA and AOB could serve as relevant bioindicators for soil quality monitoring of polluted sites. These results could be further useful for better understanding of AOB and AOA communities in polluted soils.  相似文献   

8.
以无锡市望虞河西岸河网区为研究区域,于2018年12月—2019年9月分冬、春、夏、秋4个季节采集了上覆水和沉积物样本,研究氮磷营养因子在沉积物-上覆水界面的释放规律,探究主要水质指标、沉积物氮磷和重金属含量的时空分布特征。结果表明:研究区域内的水质状况不佳,主要是氮含量超标,污染严重的点位集中在人类活动较为密集的市区和工业区;受上覆水氮磷浓度、溶解氧浓度等变化的影响,沉积物营养盐含量季节变化明显,污染状况较为严重,75%的点位属于中度和重度污染;沉积物重金属含量季节变化不显著,部分重金属的空间分布特征相似,污染程度排序为Zn>Cd>Cu>Pb>Ni>Cr>As。  相似文献   

9.
The distribution of mercury (Hg) in fractions of urban soils from two industrial cities in the Russian Far East which are subject to varying degrees of Hg contamination was examined. The speciation scheme applied was based on routine chemical extraction methods used in soil investigations. Such an approach enables the Hg data to be brought into correlation with soil basic fractions and the fate of Hg bound to different soil components to be followed. Humic acids and a non-hydrolysable residue (humin), i.e. the soil fractions most refractory to microbiotic and chemical attack, were found to be principal Hg repositories in the soils studied. This pattern was equally observed for slightly, moderately and heavily contaminated soils. Hymatomelanic acids do not appear to be an efficient Hg concentrator. In heavily contaminated soils, Hg concentrations were evident in mobile fractions of fulvic acids as well as in those fractions extracted by H2O and 0.05 M Na2-EDTA pH 3. A portion of Hg extracted by 1 M HCl increased in lower horizons, reflecting relatively weakly bound Hg.  相似文献   

10.
The planned restoration of the Kissimmee River ecocystem will backfill approximately 35 km of flood control canal (C-38) that cuts through the meandering river channel, re-establish natural flow patterns, and restore the river/floodplain ecosystem. Water quality monitoring, including nutrients, total suspended solids (TSS), turbidity, dissolved oxygen (DO), and mercury, was conducted during a pilot `test fill' project to determine if soil disturbance during canal backfilling would negatively impact these water quality constituents. Surface water nutrient concentrations varied little between sites. Generally, highest concentrations occurred prior to construction, with lowest concentrations occurring during and after construction. During construction, TSS concentrations increased at sites immediately upstream, downstream, and adjacent to the construction area. Increased turbidity was generally restricted to areas immediately upstream and downstream of the test plug, with maximum levels occurring during the initial construction phase. Some downstream increases in turbidity were observed; however, impacts were short-term, lasting less than 24 h. Depresssed DO levels (<2 mg/l) were observed upstream of the test plug following completion of the initial plug across C-38. Dissolved oxygen levels remained low for approximately 6 weeks, with no apparent ecological impacts. Total mercury (HgT) within canal sediment ranged from 9.2–180 ng/g and methylmercury concentrations ranged from 0.037–0.708 ng/g. Concentration of total mercury and total methylmercury (MeHgT) in the backfill material were much lower than concentrations in the canal sediment. No significant change in aqueous HgT concentrations occurred over the sampling period, although construction-induced turbidity could have temporarily caused a slightly elevated concentration immediately downstream of the construction site. Methylmercury concentrations in the water column ranged from 0.033–0.518 ng/l. No significant differences in mean MeHgT concentrations occured between sites or between sampling dates, except at one downstream site where MeHgT declined significantly over the sampling period.  相似文献   

11.
The muscle tissue total mercury (THg) and organomercury (OrHg) concentrations of eel (Anguilla anguilla) and roach (Rutilus rutilis) from the Hg-contaminated River Yare and the uncontaminated Ormesby Broad were compared to their respective bed sediment THg and OrHg concentrations in order to determine if fish in the River Yare had begun to approach 'background' levels. While eel from the Yare had higher flesh concentrations (260 g kg-1) than those from Ormesby Broad (102 g kg- 1), roach were found to have similar concentrations regardless of location (55 and 54 g kg-1 for Yare and Ormesby respectively). However, roach in the Yare had significantly higher body burdens of Hg and organomercury, which when analysed over time (1985–95) showed a decreasing trend approaching the levels observed in fish from Ormesby Broad, suggesting that roach are an overall better biomonitor of contamination then eel. This said, the elevated levels of Hg found in fish from Ormesby Broad indicate the existence of a diffuse source such as atmospheric deposition to the surface waters of East Anglia.  相似文献   

12.
A multimedia sampling of ambient air, wet deposition, surface water, sediment, soil and biota has been performed at Kosetice background observatory in the southern Czech Republic since 1988. An integrated monitoring approach was applied to assess the current state, anthropogenic impacts, and possible future changes of terrestrial and freshwater environments. Average PCB concentrations in the individual matrices calculated from ten years of sampling on multiple sites varied between 2 ng g(-1) in sediment and 7 ng g(-1) in soil or moss. DDT concentrations were lower in moss and needles (2 ng g(-1) and 4 ng g(-1), respectively) than in sediment (11 ng g(-1)) and soil (20 ng g(-1)), while the HCH level was higher in moss and needles (5 ng g(-1) and 6 ng g(-1), respectively) than in soil or sediment (1 ng g(-1) and 2 ng g(-1), respectively). The highest average level of PAHs was found in soil (600 ng g(-1)), while it was lower in needles (230 ng g(-1)), moss (210 ng g(-1)) or sediment (210 ng g(-1)). Time related trends of concentration levels of persistent organic pollutants in all matrices were investigated. Moss and needle trend patterns resembled those of the ambient air, showing a slight concentration decrease of all compounds, except for hexachlorobenzene. The soil, water and sediment concentrations showed a similar decrease of PAHs, PCBs, and HCHs, but there was no clear trend for DDTs and HCB.  相似文献   

13.
Persistent organic pollutants (POPs) such as chlorinated pesticides are of global concern due to their widespread occurrence, persistence, bioaccumulation and toxicity to animals and human. This paper summarises recent research on 18 chlorinated pesticides in an important catchment in China, by determining their concentrations and behaviour in water, sediment, soil and plants. The concentrations of the total pesticides were in the ranges 187-893 ng l(-1) in river water, 8.53-210 ng g(-1) dry weight in soil, 2.66-13.45 ng g(-1) dry weight in river sediment, and 651-2823 ng g(-1) dry weight in plants. The predominance of beta-HCH as the major isomer of HCHs in all water, soil, sediment and plant samples was clearly observed, due to beta-HCH's resistance to biodegradation. On average beta-HCH accounted for 44%, 53%, 50%, and 46% of the total HCH concentration in water, soil, sediment and plant, respectively. Of the DDTs, DDE accounted for 48%, 43%, 53%, 55% of the total DDT, which suggested that DDT had been transformed to its metabolites, DDE and DDD, of which DDE was the more stable. The chlorinated pesticide levels in the River Wuchuan were generally below the guideline values in China, but some sites displayed levels in excess of EC Environmental Quality Standards for HCHs and DDTs. The results therefore provide important information on the current contamination status of a key agricultural watershed in China, and point to the need for urgent actions to evaluate the long-term fate and toxicity of such persistent compounds and an appropriate remediation strategy.  相似文献   

14.
Because of past mining activities, the floodplains of the River Geul are polluted with heavy metals. The continuous supply of fresh sediments during floods has caused the floodplain soils to exhibit large quality variations in time. By measurements of 137Cs deposition rates in part of the floodplain area were determined at 0.4 to 2.7 cm yr–1. Analysis of soil metal concentrations at various depths at 65 locations, revealed that the upper 40 cm of the soil profile deposited during the past 30–45 yr, exhibit the highest metal levels. The geostatistical interpolation technique kriging was used to map actual and past pollution patterns. It was shown that, as a result of variable deposition rates, the spatial correlation structure of soil metal concentrations becomes less clear with increasing depth/age. Kriged maps of average metal concentrations in the upper 100 cm of the soil profile provided the basis for the calculation of the mass storage of heavy metals.  相似文献   

15.
The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from the "Cerco Metalúrgico de Almadenejos" decommissioned metallurgical precinct were estimated at 16.4 kg Hg y(-1), with significant differences between seasons.  相似文献   

16.
黄河口的水质、底质污染及其变化   总被引:16,自引:0,他引:16  
分析了2001年在黄河口附近所取的3处水样和3处泥样中污染物的含量,并与历史数据进行了比较.利用<地表水环境质量标准>(GB3838-2002)和美国国家海洋大气管理局(NOAA)水体泥沙质量标准等分别对水体和底泥中的重金属(砷)和氮磷污染进行了评价.认为黄河口的水污染严重,主要污染物为汞和氮;泥沙污染尚不严重,但污染物的增长率高;水体中较高的氮含量和泥沙中氮含量的迅速增高可能会对渤海湾的富营养化情况产生影响.  相似文献   

17.
Fifteen species of wild mushrooms and underlying soil samples collected in a virgin landscape of Augustowska Forest in northeastern Poland in 1997-98 were analyzed for total mercury to evaluate the status of contamination and usefulness of higher mushrooms as possible bioindicators of mercury pollution. Among the 15 species analyzed, Pinewood King Bolete, Scaly Tooth and King Bolete showed relatively high bioconcentration factors (BCF: dry-weight normalized concentrations of mercury in mushrooms relative to concentrations in soil) for mercury, which varied between 69 and 110. These three species were also characterized by great concentrations of total mercury in caps (between 2,000 +/- 800 and 2,300 +/- 1,100 ng g-1 dry wt) and stalks (between 850 +/- 390 and 1,000 +/- 500 ng g-1 dry wt.). Species such as Red-hot Milk Cap, Poison Pax and Common Chantherelle had mercury BCFs of less than 1, while Gipsy Bolete, Orange Birch Bolete, Brown Scaber Stalk, Variegated Bolete, Sandy Knight-cap and Yellow-cracking Bolete were weak or moderate mercury accumulators with BCFs between 1 and 40. Concentrations of mercury in mushrooms were greater than the tolerance limits suggested for mercury in plant foods.  相似文献   

18.
Nonylphenol (NP) is a representative environmental endocrine-disrupting chemical and persistent toxic pollutant. Previous studies have shown that the average concentration of NP in environmental waters was approximately tens to hundreds of ng L(-1) and it could even reach up to tens of μg L(-1). A simple, fast and accurate method employing a novel solid-phase extraction element named "Magic Chemisorber" (MC) followed by high-performance liquid chromatography (HPLC) using a fluorescence detector (FLD) was used for detecting NP. The most important parameters that affect the extraction process, including extraction time, desorption time, desorption solvent and repeatability, were optimized. The MC-HPLC method showed good linearity with concentrations of NP from 10 to 200 μg L(-1), a correlation coefficient of 0.9995 and the limit of detection (LOD) and limit of quantification (LOQ) of this method was 0.44 and 1.47 μg L(-1), respectively. Compared to commercial polydimethylsiloxane (PDMS) glass fiber, MC had both higher capacity and recovery and it could be used repeatedly. Using the MC-HPLC method we found that the concentration of NP in river water from Hangzhou city ranged from 8.54 ± 1.23 μg L(-1) (Qiantang River) to 65.77 ± 3.69 μg L(-1) (Tiesha River), which was similar to that of international regions heavily polluted with NP and higher than that of Bohai Bay, the Yellow River and the Pearl River Delta in China. This level of NP pollution is possibly related to the rapid development of the textile, printing and paper industries of Zhejiang province.  相似文献   

19.
The study analysed the content of heavy metals in surface soil and sediment samples from the Bregu i Matit Plain in NW Albania in relation to irrigation in order to evaluate the soil pollution and the potential risk to human health. Evaluation of soil pollution was performed using the enrichment factor and geo-accumulation index. Contents of cadmium, chromium and nickel of irrigated soils were significantly higher than those of non-irrigated soil, while contents of lead (in three of the irrigated locations), zinc and arsenic (in one of the irrigated locations) were significantly lower. Correlation analysis (CA) and principal component analysis (PCA) indicated that the primary source of the first three metals was irrigation, and the last three metals were originated from other anthropic sources, like the use of chemicals, etc. Enrichment factor (E f) calculation showed that irrigated soils were most enriched in cadmium, chromium, copper and nickel. Index of geo-accumulation (I geo) revealed that arable soils of Bregu i Matit are unpolluted to moderately polluted with cadmium, chromium, copper and zinc and moderately to strongly polluted with nickel and arsenic. The presence of heavy metals in the studied soils indicates a potential risk of transfer of these elements in the food chain. Therefore, further studies on the speciation of heavy metals in the studied soils in order to evaluate their mobility are needed.  相似文献   

20.
Contents of inorganic nitrogen (NH4(+)-N and NO3(-)-N) in soil profiles were measured in five typical zones ( including permanently flooded floodplain(B), 1-year floodplain (O), 5-year floodplain (F),10-year floodplain (T), and 100-year floodplain (H) )from Huolin River floodplain in Erbaifangzi, Jilin Province of China, in the soil-defrosted period (Mayof 1999). Contour maps and profile maps were constructed to describe the spatial distributions of NH4(+)-N and NO3(-)-N) in order to identify the influences of flood frequencies on them. Results showed that NH4(+)-N generally increased with depth in soil profiles from the five areas, but NH4(+)-N contents in T or H areas significantly differed from those in other areas. For NO3(-)-N, with the exception that there was a significant cumulative peak (6.77 +/- 0.08 mg kg(-1)) at 15-cm depth (10-20 cm) in B area, no significant difference was observed between NO3(-)-N contents in soil profiles from the other four areas. The horizontal distributions of NH4(+)-N and NO3(-)-N in top soils (0-10 cm) were different in the five areas,which were greatly influenced by flood frequencies. The highest content of NH4(+)-N or NO3(-)-N did not appear in B area but in the floodplain with certain flood frequency. For example, NH4(+)-N content (16.81 mg kg-(1)) in 5-year floodplain wetland was highest, and the highest content of NO3(-)-N(1.69 mg kg(-1)) appeared in 1-year floodplain wetland. In addition, NH4(+)-N contents were significantly correlated with soil pH, and NO3(-)-N contents had significant correlation with inorganic carbon, but there were no significant correlations between inorganic nitrogen and other selected soil properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号