首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Warneck P 《Chemosphere》2007,69(3):347-361
Experimentally determined Henry's law coefficients of 18 chlorinated C(1) and C(2) hydrocarbons reported in the literature as a function of temperature and at the single temperatures 20 and 25 degrees C were compiled and converted to common units of concentration and pressure: K(H) (moldm(-3)atm(-1)). The individual values are plotted in the ln(K(H)) versus reciprocal absolute temperature coordinate frame, data not in harmony with others were deleted, and the resulting data sets treated by linear regression analysis to derive averaged parameters in the general equation ln(K(H))=A+B/T. The quality of the evaluation was further checked by comparison of values calculated from the resulting parameter values with averages obtained from the direct measurements at 20 degrees C. Good agreement was observed for 15 compounds, larger discrepancies arise only for chloroethane, 1,2-dichloroethane and hexachloroethane. In all three cases the data base is poor and needs to be improved. The results are used to derive heats of solution for the C(1) and C(2) chlorinated hydrocarbons in water, Gibbs energies of solution and standard Henry's law coefficients at 298.15K. Henry's law coefficients calculated from the ratio of solubility of the compound in water and the saturation vapor pressure of the pure compound reported by Sangster [Sangster, J.M., 2003. Henry's law constants for compounds stable in water. In: Fogg, P.G.T., Sangster, J.M. (Eds.), Chemicals in the Atmosphere - Solubility, Sources and Reactivity. Wiley, Chichester, West Sussex, England, pp. 255-397] provide good agreement with the experimental data in eight out of eleven cases treated.  相似文献   

2.
To meet increasingly stringent regulations for diesel engines, technologies such as combustion strategies, aftertreatment components, and fuel composition have continually evolved. The emissions reduction achieved by individual aftertreatment components using the same engine and fuel has been assessed and published previously (Liu et al., 2008a, Liu et al., 2008b, Liu et al., 2008c). The present study instead adopted a systems approach to evaluate the net effect of the corresponding technologies for model-year 2004 and 2007 engines. The 2004 engine was equipped with an exhaust gas recirculation (EGR) system, while the 2007 engine had an EGR system, a crankcase emissions coalescer, and a diesel particulate filter. The test engines were operated under the transient federal test procedure and samples were collected with a source dilution sampling system designed to stimulate atmospheric cooling and dilution conditions. The samples were analyzed for elemental carbon, organic carbon, and C1, C2, and C10 through C33 particle-phase and semi-volatile organic compounds. Of the more than 150 organic species analyzed, the largest portion of the emissions from the 2004 engine consisted of formaldehyde, acetaldehyde, and naphthalene and its derivatives, which were significantly reduced by the 2007 engine and emissions technology. The systems approach in this study simulates the operation of real-world diesel engines, and may provide insight into the future development of integrated engine technology. The results supply updated information for assessing the impact of diesel engine emissions on the chemical processes, radiative properties, and toxic components of the atmosphere.  相似文献   

3.
Few techniques exist to measure the biodegradation of recalcitrant organic compounds such as chlorinated hydrocarbons (CHC) in situ, yet predictions of biodegradation rates are needed for assessing monitored natural attenuation. Traditional techniques measuring O2, CO2, or chemical concentrations (in situ respiration, metabolite and soil air monitoring) may not be sufficiently sensitive to estimate biodegradation rates for these compounds. This study combined isotopic measurements (14C and delta13C of CO2 and delta13C of CHCs) in conjunction with traditional methods to assess in situ biodegradation of perchloroethylene (PCE) and its metabolites in PCE-contaminated vadose zone sediments. CHC, ethene, ethane, methane, O2, and CO2 concentrations were measured over 56 days using gas chromatography (GC). delta13C of PCE, trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE), delta13C and 14C of vadose zone CO2 and sediment organic matter, and delta13C, 14C, and deltaD of methane were measured using a GC-isotope ratio mass spectrometer or accelerator mass spectrometer. PCE metabolites accounted for 0.2% to 18% of CHC concentration suggesting limited reductive dechlorination. Metabolites TCE and DCE were significantly enriched in (13)C with respect to PCE indicating metabolite biodegradation. Average delta13C-CO2 in source area wells (-23.5 per thousand) was significantly lower compared to background wells (-18.4 per thousand) indicating CHC mineralization. Calculated CHC mineralization rates were 0.003 to 0.01 mg DCE/kg soil/day based on lower 14C values of CO2 in the contaminated wells (63% to 107% modern carbon (pMC)) relative to the control well (117 pMC). Approximately 74% of the methane was calculated to be derived from in situ CHC biodegradation based on the 14C measurement of methane (29 pMC). 14C-CO2 analyses was a sensitive measurement for quantifying in situ recalcitrant organic compound mineralization in vadose zone sediments for which limited methodological tools exist.  相似文献   

4.
In this study, aged aqueous suspensions of C(60) (nC(60)) were investigated in the respirometric OECD test for ready biodegradability. Two suspensions of nC(60) were prepared by stirring and aged under indirect exposure to sunlight for 36 months. ATR-FTIR analyses confirmed the presence of C(60)-structures in the suspensions. Samples of the nC(60) suspensions (20mg/l) were inoculated with activated sludge (30 mgTSS/L) and incubated in a mineral medium under aerobic conditions. Since no mineralisation of nC(60) was observed after 28 days of incubation, 5mg/l sodium acetate was added to the media. After additional 20 days, no mineralisation of nC(60) was observed. However, within a few days sodium acetate was completely mineralised, showing that the biomass was not inhibited by the presence of nC(60). Based on results from this simple approach, aged nC(60) can be classified as not ready biodegradable according to the standard OECD test procedure.  相似文献   

5.
Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems.  相似文献   

6.
Soil fumigation to control pests and pathogens is an important part of current agricultural practice. A reduction in fumigant emissions is required to ensure worker safety and environment health. A field trial in Florida was conducted to investigate whether carbonating Telone C35? ((Z)- and (E)-1,3-dichloropropene with 35 % chloropicrin) would improve the delivery of the fumigant to such an extent that the application rate could be decreased without sacrificing efficacy. All treatments were carried out in three replications in a complete block design. The use of carbon dioxide (CO(2)) to carbonate and pressurize Telone C35 provided quicker and deeper distribution initially compared to application by nitrogen gas (N(2)) pressurization. The deeper distribution of Telone C35 components found with CO(2) application may have lowered the initial concentration of Telone C35, but it did not appreciably alter the disappearance rate of the three chemicals, chloropicrin, (Z)- and (E)-1,3-dichloropropene. The faster vertical distribution within the bedded soil of the Telone C35 by CO(2) did enhance volatilization of the active ingredients into the atmosphere compared to volatilization of similar reduced rate applied by N(2) pressurization. However, the cumulative amount volatilized from the carbonated fumigant beds at 75 % application rate was lower than the cumulative amount emitted by full rate of Telone C35 using N(2). The efficacy of the carbonated Telone C35 at a lower application rate was statistically equivalent to that of non-carbonated fumigant using N(2) pressurized injection at a higher application rate, based on weed enumeration and the root-knot nematode galling index.  相似文献   

7.
Artemisia lerchiana is a wormwood species of the Central Asian steppe regions, where it completely cover whole areas. For the first time it was possible to show through field experiments that C(1)/C(2) halocarbons (VCHCs), such as chloroform (CHL), tetrachloroethene (PER) and hexachloroethane (HEX), can be taken up by test plants of the species A. lerchiana via the soil/root pathway and metabolised inter alia into trichloroacetic acid (TCA) under semi-aride conditions. At the same time, chlorophyll a fluorescence measurements carried out on the test plants revealed a phytotoxic influence on plant vitality (max. decline in vitality of 52% with application of CHL) and less efficient energy flows in the photosynthesis mechanism of the A. lerchiana test plants. The authors examine possible links between the simultaneous appearance of VCHCs and additional drought stress in the acceleration of desertification processes.  相似文献   

8.
Nonmethane hydrocarbons (NMHCs) are important precursors of ozone and other photo oxidants. We presented continuous hourly average concentrations of 45 C2–C10 NMHCs measured in urban area of Dallas, USA from 1996 to 2004. Most of the selected compounds are good variables with less noise. The top 10 species with high ozone-generating potential were identified according to their concentrations and reactivities. The ambient concentrations of abundant anthropogenic emission hydrocarbons measured in Dallas were about 2–4 times of the background values measured in the remote areas with adjacent latitude. The time series for anthropogenic emission hydrocarbons showed an obvious seasonal cycle with relatively high concentration in winter and low concentration in summer. The sinusoidal function with a linearly decreasing factor could well fit the time series of NMHCs. The phase of seasonal cycle for the aromatic hydrocarbons of toluene, m/p xylene and o-xylene that might come from both vehicle emission and solvent utilities evaporation was about 1 month earlier than that for alkanes and alkenes that mainly came from vehicle emission. Ambient NMHCs in Dallas decreased with a stable rate during 1996–2004. For most of compounds with high ozone-generating potential, the rate of ambient concentration decrease was higher or much higher than the rate of volatile organic compounds (VOCs) source emission reduction estimated by EPA's National Emission Inventory. On weekdays, the morning hydrocarbon concentration peak was coincident with morning traffic rush time in Dallas. Another concentration peak was delayed to afternoon traffic rush time. The characteristics of VOCs sources, photochemical removal processes and atmospheric dilution could be interpreted by the diurnal variations of benzene/ethylbenzene (B/E), toluene/ethylbenzene (T/E) and xylene/ethylbenzene (X/E). The ratio of VOC/NOx measured in Dallas was substantially smaller than that calculated for USA cities. Ozone formation in Dallas was VOC sensitive.  相似文献   

9.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

10.
Wong CS  Muir DC  Mabury SA 《Chemosphere》2003,50(7):903-909
This paper describes a novel analytical methodology using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to measure the 13C/12C ratios of chloroacetic acids (CAAs). CAAs are a major class of environmental pollutants that are widely distributed throughout the world, often at relatively high concentrations, and are of concern due to their toxic effects, particularly on plants. The 13C/12C of CAA reagents was measured by IRMS subsequent to offline combustion. Aqueous solutions of these CAAs were derivatized to the corresponding methyl chloroacetates (MCAAs) with acidic methanol with a known isotopic composition, extracted into pentane, and analyzed by GC/C/IRMS. Measured 13C/12C ratios of derivatized MCAAs were in agreement with calculated values within 1 per thousand for monochloroacetic acid and trichloroacetic acid and within 2 per thousand for dichloroacetic acid, suggesting that methylation and other analytical methodology steps do not isotopically fractionate derivatized MCAAs. 13C/12C ratios of reagent CAAs from different sources had varying isotopic signatures suggesting differences in source carbon and/or production methods. Our results underscore the potential of stable isotopes to serve as tracers of environmental sources of CAAs.  相似文献   

11.
We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3Cl, CH2Cl2, CHCl3, CCl4, C2H3Cl, and C2H5Cl) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-injection incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments. A 99.99-percent destruction efficiency was attained in one second at temperatures ranging from 1280 to 960 K, with CCl4 requiring the highest temperature for destruction and C2H5Cl the lowest. For all compounds except C2H5Cl, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCl3.  相似文献   

12.
We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3CI, CH2CI2, CHCI3, CCI4, C2H3CI, and C2H5CI) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-Injection Incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments.

A 99.99-percent destruction efficiency was attained In one second at temperatures ranging from 1280 to 960 K, with CCI4 requiring the highest temperature for destruction and C2H5CI the lowest. For all compounds except C2H5CI, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCI3.  相似文献   

13.
Successful applications of different analytical procedures to determine quantitatively endosulfan and its metabolites in aqueous media can be found in recent literature. Fundamentally, they have made use of solid-phase extraction (SPE) and gas (GC) or liquid chromatography (LC), sometimes coupled to mass spectrometry (MS). In this paper, a new and alternative methodology to determine quantitatively endosulfan in aqueous media is reported. A C18-modified carbon-paste electrode has been used to determine voltammetrically endosulfan, despite its unfavourable electrochemical properties and behaviour. The methodology proposed is based on the decrease experienced by the peak intensity corresponding to voltammetric signals of Cu(II) when successive and constant additions of endosulfan are carried out. This decrease is directly proportional to the concentration of endosulfan what allows to perform an indirect quantification of the pesticide. The detection limit obtained is 40 ng l−1, this value being under the limits specified by European norms and EPA reports.  相似文献   

14.
15.
A chemical mass balance (CMB) receptor model was used for estimating the diurnal contributions of VOC emission sources to the ambient C2–C9 VOC concentration in Seoul, Korea. For this purpose, the VOC concentrations were measured in the morning, the afternoon, and the evening. The samples were collected using a 2-h integrated SUMMA canister. The source profiles were developed for the CMB calculation in the Seoul area. To investigate the effect of the chemical reaction loss of VOCs on the CMB calculation, the modified model employing a decay factor and the standard model that considers no loss were compared. The modified model estimated that the vehicle exhaust (52%) was the largest leading source of VOCs in the Seoul atmosphere, followed by the use of solvents (26%), gasoline evaporation (15%), the use of liquefied petroleum gas (LPG) (5%), and the use of liquefied natural gas (LNG) (2%). Relative source contribution for vehicle exhaust showed a clear diurnal variation with a high in the morning and evening and a low in the afternoon, while the contribution of evaporative emissions (gasoline evaporation and solvent usage) showed a different diurnal pattern from that of the vehicle exhaust, exhibiting a high in the afternoon and evening and a low in the morning. It was found that the difference between the total source contribution (μg m−3) estimated from these two models was not statistically significant. However, when the paired-sample t-test is applied to the individual sources, a significant difference was found for the vehicle exhaust and the solvent use. In addition, the modified model brought forth a better performance with high R2 and low χ2 as compared to those obtained from the standard model in the CMB calculation. The vehicle exhaust and solvent use were estimated to be the largest and the second largest contributors to ambient benzene as well as ozone formation potential (OFP), respectively. Based on above results we believe that incorporating the reaction loss in the CMB calculations helps to better fit the source profile to the ambient VOC concentrations. However, the reaction loss does not significantly affect the estimation of source contributions.  相似文献   

16.
The gas-phase photocatalytic oxidation (PCO) of pentane, i-pentane, hexane, i-hexane and heptane over illuminated titanium at ambient temperatures was studied in a continuous stirring-tank reactor and for different values of VOC feed concentrations and relative humidity levels. Conversions achieved were over 90% for residence times from 50 to 85 s and the only products formed were CO2 and H2O, while no catalyst deactivation was observed. The obtained results indicate that the molecular and stereochemical structures of the compounds play an important role in the reaction, as the rate was increasing with higher molecular weight, and the presence of a tertiary carbon atom enhanced the reactivity. It was also observed that the increase of the carbon chain by a methyl group had the same influence in the reaction rate in the case of both pentane and i-pentane, while the ratio of the rates for the linear and branched structure was the same for both C5 and C6 isomers. The presence of water in the system had an inhibitory effect in all cases. The PCO kinetics was well fit by a Langmuir–Hinshelwood model, modified so as to take into consideration the influence of water vapour. The rate constants ranged from 1.87 × 10?7 mol m?2 s?1 for pentane to 3.03 × 10?7 mol m?2 s?1 for heptane, and the VOC adsorption constants from 1.14 104 to 2.83 104 m3 mol?1, while the water adsorption constant was 11.2 m3 mol?1.  相似文献   

17.
Abstract

Mass balance and fate of atrazine‐ 14C and pentachlorophenol‐ 14C (PCP‐ 14C) were studied in short‐term tests in a closed aerated laboratory soil‐plant system, using two concentrations in soil and two plant species, as well as under outdoor conditions for one vegetation period. In the laboratory, for both pesticides bioaccu‐mulation factors of radiocarbon taken up by the roots into plants were low. They were higher for lower (1 ppm) than for higher soil concentrations (6 ppm for atra‐zine, 4 ppm for pentachlorophenol) and varied with the plant species. Mineralization to 14CO2 in soil was negatively related to soil concentration only for PCP‐ 14C. Conversion rates in soil including the formation of soil‐bound residues were higher for the lower concentrations of both pesticides than for the higher ones; conversion rates in plants were species‐dependent. In 14 terms of CO2 formation and of conversion rates, PCP was less persistent in soil than was atrazine. For both pesticides, laboratory data on conversion and mineralization gave a rough prediction of their persistence in soil under long‐term outdoor conditions, whereas bio‐accumulation factors in plants under long‐term outdoor conditions could not be predicted by short‐term laboratory experiments.  相似文献   

18.
Natural phenolic monomers are ubiquitous in the environment and are involved in the stabilization of atmospheric carbon and the transformation of xenobiotics. Investigations on the stabilization of phenolic carbons and their environmental fate are hampered by the unavailability of commercial [13C]- and [14C]-labeled phenols. Here we report the complete chemical synthesis of the lignin and humus structural monomers p-coumaric, ferulic, and caffeic acids, p-hydroxybenzaldehyde, protocatechualdehyde, vanillin, catechol, and guaiacol, uniformly [13C]- or [14C]-labeled in the aromatic ring, starting from commercially available [U-ring-13C]- or [U-ring-14C]-labeled phenol. The synthesis of these compounds involved selective ortho-hydroxylation of the aromatic ring, Friedel-Crafts alkylation, and Knoevenagel condensation. [U-ring-13C]- or [U-ring-14C]-p-coumaric acid was synthesized via p-hydroxybenzaldehyde with a 75% yield with respect to phenol. Synthesis of [U-ring-13C]- or [U-ring-14C]-ferulic acid, consisting of six single steps via guaiacol and vanillin, had an overall yield of up to 45%. Uniformly ring-labeled caffeic acid was synthesized either via catechol and protocatechualdehyde in five single steps, yielding [U-ring-14C]-caffeic acid with a 37% yield, or via guaiacol, vanillin, and ferulic acid in seven steps, yielding [U-ring-13C]-caffeic acid with an 18% yield. Ferulic acid, [14C]-labeled at beta-C of the propenoic side chain, was synthesized from [2-14C]-malonic acid under Knoevenagel conditions with a 67% yield with respect to malonic acid. Demethylation of the [beta-14C]-ferulic acid with BBr3 in CH3CN resulted in [beta-14C]-caffeic acid with a 62% yield. All [U-ring-13C]-labeled phenolic products were analyzed by 13C nuclear magnetic resonance (13C-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).  相似文献   

19.
The Baltic Sea is a species-poor, semi-enclosed, brackish sea, whose sediments contain a wide range of contaminants, including sediment-associated metals and radionuclides. In this study, we have examined and compared bioaccumulation kinetics and assimilation efficiencies of sediment-associated (51)Cr, (63)Ni and (14)C in three key benthic invertebrates (the deposit-feeding Monoporeia affinis, the facultative deposit-feeding Macoma baltica, and the omnivorous Halicryptus spinulosus). Our results demonstrate that (i) all radionuclides were accumulated, (ii) the different radionuclides were accumulated to various extents, (iii) small changes in organic carbon concentration can influence the accumulation, and (iv) the degree of accumulation differed only slightly between species. These processes, together with sediment resuspension and bioturbation, may remobilise trace metals from the sediment to the water and to higher trophic levels, and therefore should be taken into account in exposure models and ERAs.  相似文献   

20.
A soil drench of [Formula: see text] (EDU) (150 ppm) applied to 'Progress No. 9' pea plants 24 h before an acute ozone exposure (0.25 ppm, 4 h) completely protected the foliage from visible symptoms normally induced by the pollutant. In the absence of ozone, EDU-treated plants were found to emit the same amount of C(2)H(4) as plants not treated with EDU. Based on this evidence, EDU-induced tolerance to ozone could not have been attributed to the prevention of an interaction between ethylene and ozone (sensu Mehlhorn and Wellburn). In the presence of ozone, EDU-treated plants did not emit the burst of C(2)H(4) that normally occurs (sensu Craker), extending the observation that EDU-treated plants do not exhibit the adverse physiological responses normally caused by ozone. The classic C(2)H(4) biosynthesis inhibitor aminoethoxyvinylglycine (AVG) did not prevent ozone phytotoxicity, although it significantly reduced ethylene emission from the ozonated tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号