首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用自行改造的20 L球形爆炸容器进行瓦斯抑爆研究,试验中采用分压法来制备混合气体,定量描述了爆炸压力、爆炸压力上升速率及抑爆效率等特征,分析了在3种惰性气体(CO2、N2和Ar)作用下CH4的最大爆炸压力和最大爆炸压力上升速率。结果表明,CO2的抑爆效果优于其他两种惰性气体,当CO2的体积分数达到6%时,CH4的最大爆炸压力和最大爆炸压力上升速率分别降为0.113 MPa和1.58 MPa/s,下降了78.6%和86.4%。通过试验可知,3种惰性气体均能延缓瓦斯爆炸的发生,降低爆炸的强度,但对于N2和Ar而言则需要增加惰性气体的体积分数以达到与CO2相同的抑爆效果。基于上述单相抑爆结果,选择3种惰性气体中抑爆效果最佳的CO2来进行惰性气体-水雾协同抑爆效率的研究。通过大量重复性试验得出,2%CO2-1 MPa水雾抑爆效率由单相体积分数为2%的CO2  相似文献   

2.
为研究弯管对铝粉爆炸及二次爆炸传播和后果的影响,基于实验室粉尘爆炸及抑爆系统,测试并分析粉尘爆炸及其抑爆的关键参数。利用弯管中丙烷爆炸产生的激波引起铝粉二次扬尘爆炸,并针对铝粉二次爆炸进行抑爆测试。结果表明:激波吹起的铝粉引起的二次爆炸压力明显高于纯丙烷,铝粉质量浓度为500 g/m3时粉尘爆炸压力最高,加入抑爆剂后,粉尘爆炸的火焰传播时间及火焰强度明显减小,且磷酸二氢铵的抑爆效果优于碳酸钙,爆炸压力随着抑爆剂浓度的增加而降低,加入质量分数为10%的磷酸二氢铵能完全抑爆。  相似文献   

3.
采用哈特曼爆炸试验装置完成长庆油田典型油气组分爆炸特性参数测试,建立了油气爆炸模拟试验装置,并针对长庆油田油气爆炸研制自动抑爆装置,进行了长庆油田油气爆炸抑爆试验.长庆油田油气爆炸下限体积分数为3.0%,爆炸上限体积分数为14.0%,最大爆炸压力0.671 MPa,最大爆炸压力上升梯度40.625 MPa/s.长庆油田油气点爆后33 ms发展成爆炸,230 ms爆炸火焰向上扩展,624 ms爆炸火焰达到最大状态,920 ms爆炸火焰强度明显减弱,爆炸火焰很快自行熄灭.所研制的自动抑爆装置由紫外传感器、控制器和抑爆器组成.紫外传感器能抗太阳光、一般电源光的干扰;控制器由高能干电池供电,使用方便;自动抑爆装置响应时间小于15 ms,成雾时间小于150 ms.油气抑爆试验表明,自动抑爆装置能在1.5m范围内扑灭油气爆炸火焰.  相似文献   

4.
在20 L爆炸实验装置中,开展了3种不同中值粒径的EVA树脂粉尘/甲烷/空气所组成的杂混物爆炸特性研究,探究了甲烷浓度对粉尘爆炸下限、最大爆炸压力的影响。结果表明,尽管添加的甲烷气体浓度低于爆炸下限,仍使得粉尘爆炸下限得以降低,粒径较大的EVA III粉尘,当甲烷体积分数为1%时,爆炸下限降低约25%;粒径较小的EVA I粉尘,当混入甲烷体积分数为4%时,爆炸下限则降低80%;甲烷体积分数每增加1%,可燃粉尘最大爆炸压力上升约10%,但对于粒径较小的EVA I粉尘,当甲烷体积分数为4%时,最大爆炸压力的上升呈现突变趋势,上升近50%。  相似文献   

5.
为研究硬脂酸粉尘的爆炸特性,采用20 L球型爆炸仪对4个粒径范围的硬脂酸粉尘进行粉尘爆炸试验研究。结果表明:一定浓度范围内增大粉尘浓度能够提升硬脂酸粉尘的爆炸能量和燃烧速率。增大粉尘浓度,爆炸猛烈度先增强后减弱;减小粉尘粒径,能增强爆炸猛烈度和敏感度。粒径小于58 μm粉尘的爆炸猛烈度和敏感度最大,浓度500 g/m3时,该粉尘有最大爆炸压力1.12 MPa和最大升压速率142.00 MPa/s。  相似文献   

6.
为了探明外部条件对玉米淀粉粉尘爆炸特性参数的影响,利用20 L球形爆炸装置进行试验测试,探讨了点火能量及粉尘含水量对粉尘爆炸特性的影响,对比研究了CaCO_3和Al(OH)_3两种惰性介质的抑爆效果。结果表明:随点火能量增加,粉尘最大爆炸压力和最大升压速率呈线性上升,在高质量浓度下,粉尘爆炸压力受点火能量的影响更显著;添加CaCO_3和Al(OH)_3能够降低玉米淀粉的爆炸压力,相对于CaCO_3的物理抑爆,Al(OH)_3的物理-化学抑爆效果更佳;玉米淀粉粉尘的最大爆炸压力及爆炸升压速率随粉尘含水量降低而不断增大。  相似文献   

7.
为了研究橡胶粉尘的爆炸特性以及惰性粉体对橡胶粉尘的抑爆,用20 L球形爆炸装置测试橡胶粉尘的爆炸特性,分析粉尘浓度和粒径对橡胶粉尘爆炸压力(pmax)和爆炸指数(Kst)的影响,并且探究聚磷酸铵、磷酸二氢铵、碳酸钙和碳酸氢钠4种不同惰性粉体对橡胶粉尘的抑爆效果及不同粒径的聚磷酸铵对橡胶粉尘爆炸压力的影响。结果表明:在爆炸极限范围内,橡胶粉尘的爆炸压力随粉尘质量浓度增加先增大后减小;橡胶粉尘粒径越小,其爆炸后果越严重;聚磷酸铵对橡胶粉尘的抑爆效果相对较好;且在一定质量浓度范围内粒径越小,抑爆效果越好。  相似文献   

8.
通过开展硅质量分数25%高硅铝合金粉尘燃爆特性研究,揭示了硅质量分数25%高硅铝合金粉尘的最小点火能、最低着火温度、爆炸下限和最大爆炸压力。研究结果表明,在实际生产中要防止高硅铝合金粉尘云与雷电、静电、生产中摩擦或碰撞所产生的火花等能量源接触,避免达到高硅铝合金粉尘云的最小点火能0.1~0.2 mJ而引发爆炸事故;要防止出现明火与发热设备热表面温度达到高硅铝合金粉尘云最低着火温度960℃;对高硅铝合金生产场所、工艺设备等进行抗爆设计时,约束爆炸压力措施承受最大爆炸压力的冲击至少要在0.525 MPa或以上。  相似文献   

9.
为减少乙炔火灾爆炸事故的发生,采用20 L爆炸罐为试验仪器,对常温、初始压力0.1 MPa条件下,不同体积配比乙炔-空气混合气的燃爆特性及氮气对乙炔分解爆炸的影响进行了试验研究,并结合碰撞理论和燃烧反应方程对试验结果进行了理论分析。结果表明:乙炔-空气混合气体随乙炔体积分数增大,最大爆炸压力逐渐升高;在乙炔体积分数为10%~55%范围内,乙炔与空气混合气的最大爆炸压力恒定在1.7 MPa,乙炔体积分数为10%时取得最大爆炸指数(78.14MPa.m/s);乙炔体积分数为55%~100%范围内,混合气体爆炸与初始压力有关,并且初始压力随乙炔体积分数增大而升高;纯乙炔分解爆炸的初始压力为0.18 MPa。氮气对乙炔分解爆炸有一定的抑制作用,并随氮气体积分数增加,抑制作用逐渐增大。  相似文献   

10.
为研究粉尘质量浓度、粒径和点火延迟时间对木粉尘最大爆炸压力影响,以桑木粉尘为对象,利用1.2 L的Hartmann管进行试验。研究结果表明:最大爆炸压力随着粉尘质量浓度的增加先增大后减小,随着粉尘粒径的增大而减小,随着点火延迟时间的增大而增大。在单因素试验基础上,运用Design-Expert软件对Box-Behnken所设计的响应面试验方案分析,得到影响粉尘最大爆炸压力大小顺序为:点火延迟时间>质量浓度>粒径,同时Design-Expert软件预测出最危险爆炸强度的试验条件为:质量浓度840.24 g/m3,粒径260目,点火延迟时间12 s,最大爆炸压力为0.511 775 MPa,经检验,拟合性较好,为防爆设备本质安全强度设计提供了一定的参考价值。  相似文献   

11.
为了解CO2-超细水雾对瓦斯/煤尘爆炸抑制特性,用自行搭建的实验系统,从超压、火焰传播速度和火焰结构3个方面研究了CO2-超细水雾形成的气液两相介质对9.5%瓦斯/煤尘复合体系爆炸的抑爆效果、影响因素与原因。研究结果表明:随着CO2体积分数和超细水雾质量浓度的增加,爆炸火焰最大传播速度、爆炸超压峰值均出现明显下降,火焰到达泄爆口时间显著延迟;尤其当CO2体积分数达到14%与超细水雾的共同抑爆效果凸显,瓦斯/煤尘复合体系爆炸超压的“震荡平台”消失,同时火焰结构呈现“整体孔隙化”。所得结论为煤矿井下高效防爆抑爆技术进行了完善和增强。  相似文献   

12.
杨春丽 《安全》2020,(2):48-54
N2和CO2是常用的惰性抑爆气体,为研究两种气体的抑爆特性,采用20L球形爆炸试验装置,分析了不同浓度配比条件下N2/CH4/空气以及CO2/CH4/空气混合气体的爆炸压力,同时采集爆炸后的气体样品,对比分析爆炸后残留气体的主要成分。结果显示:随CH4浓度从5%增加至12.5%时,完全抑制CH4爆炸需要的惰性气体最小量先增大后降低,CH4浓度在6.5%~7.5%之间时,抑爆需要的惰性气体的量最大;在同一CH4浓度条件下,抑爆需要N2的量大于CO2,并且CH4浓度在5%~6.5%时,抑爆需要两种惰性气体的量值差别最大;当CH4浓度一定时,随着加入惰性气体量的增大,爆炸最大超压逐渐降低,惰性气体浓度和爆炸超压之间基本呈线性关系;在同样条件下,相对于N2,CO2为抑爆气体时,爆炸后腔体内残留的CH4浓度较高。研究成果为惰性气体抑爆技术提供技术支撑,同时为揭示惰性气体抑爆机理有一定作用。  相似文献   

13.
为有效防止粉尘爆炸泄爆引起的二次爆炸及火灾问题,基于泄压理论、消火机理,设计开发无火焰泄压装置,装置主要由消火结构、底座、爆破片及夹持机构组成,消火结构由不锈钢金属丝网组成。选择铝粉尘为测试粉尘,通过自建除尘系统试验平台进行试验研究。结果表明:无火焰泄压装置可成功阻止火焰传播,装置释放的冲击波在5 m外均小于5 kPa,除尘系统内部最大泄爆压力为0.1 MPa,装置前端火焰传播速度均大于100 m/s。  相似文献   

14.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   

15.
为了解橡胶粉尘的爆炸危险性,采用20 L球爆炸测试装置对常温常压下、粒径75μm以下的橡胶粉尘在质量浓度50~700 g/m3范围内的爆炸特性进行试验研究,测定其最大爆炸压力及爆炸指数随质量浓度的变化规律,进而对其爆炸危险性程度进行分级。结果表明:橡胶粉尘质量浓度为300 g/m3时,爆炸压力达到最大值0.49MPa;在橡胶粉尘质量浓度为250 g/m3时,爆炸指数达到最大值5.04MPa·m/s,根据ISO 6184粉尘爆炸烈度等级分级标准,其粉尘爆炸危险性分级为St-1级。  相似文献   

16.
聂百胜  王晓彤  宫婕  尹斐斐  彭超 《安全》2021,42(1):前插1,1-15
为探究瓦斯煤尘爆炸特性及抑爆机理,本文通过一系列实验,研究瓦斯、煤尘爆炸的速度和温度等特征,提出利用图像相关系数法和辐射测温原理计算火焰传播速度及温度场变化,定量分析影响煤尘爆炸的因素以及产物变化规律,揭示煤尘爆炸的宏微观机制。结果表明:火焰分形维数可以用来反应瓦斯爆炸强度,即当分形维数更接近2.2937时爆炸反应最为强烈,其爆炸过程中自由基最终生成浓度与CH 4初始浓度呈倒U型关系;当量比对煤粉火焰爆炸压力及速度也有一定影响,在最佳当量比的2倍左右时可以达到最大爆炸压力和最大火焰传播速度。另外本文亦采用泡沫陶瓷对瓦斯的多次爆炸和连续爆炸进行抑爆,发现不同厚度和孔隙的泡沫陶瓷具有不同的抑制效果,孔隙较大的泡沫陶瓷对爆炸能量有较好的抑制作用。  相似文献   

17.
为研究玉米淀粉粉尘爆炸危险性,采用哈特曼管式爆炸测试装置和20 L球爆炸测试装置对200目(<75μm)以下的玉米淀粉粉尘爆炸危险性进行评估,基于静电火花和粉尘质量浓度对粉尘爆炸的影响,对玉米淀粉的静电火花最小点火能量、爆炸下限质量浓度、最大爆炸压力和爆炸指数进行了研究,根据试验结果对玉米淀粉爆炸危险性进行分级。试验结果表明:温度在25℃,喷粉压力为0.80 MPa,粉尘质量浓度在250~750 g/m3范围内,粉尘的最小点火能量随着粉尘质量浓度增加而降低,其最小点火能量在40~80 mJ之间;在点火能量为10 kJ时,粉尘爆炸下限质量浓度在50~60 g/m3之间;在粉尘质量浓度为750 g/m3时,爆炸压力达到最大,为0.66 MPa;在粉尘质量浓度为500 g/m3时,爆炸指数达到最大,为17.21 MPa.m/s,其粉尘爆炸危险性分级为Ⅰ级。  相似文献   

18.
为研究NaHCO3对玉米淀粉爆炸的抑制效果,采用20 L球形爆炸装置测试玉米淀粉在添加不同抑制比NaHCO3及其固态分解产物Na2CO3后爆炸参数变化规律,并分析NaHCO3抑制淀粉爆炸过程。结果表明:NaHCO3及Na2CO3对玉米淀粉爆炸均有抑制作用,NaHCO3抑制效果优于Na2CO3;混合粉尘的最大爆炸压力、最大爆炸压力上升速率与爆炸指数随抑制比增大而逐渐减小,爆炸时间随抑制比增大而逐渐延长。随着NaHCO3浓度增加,物理抑制效果逐渐增加,化学抑制效果基本保持不变。NaHCO3浓度不同时,其抑制主导过程不同,当抑制比为0.1~0.5时,NaHCO3抑制效果以化学抑制为主,物理抑制为辅;抑制比为0.8和1.2时,NaHCO3抑制效果以物理抑制为主,化学抑制为辅;当抑制比为1.2时,玉米淀粉爆炸完全被NaHCO3抑制,此时物理抑制起主导作用。  相似文献   

19.
为研究泄爆面积比对泄爆门泄爆特性的影响,运用FLUENT软件建立煤矿井下1∶1巷道模型,在不同泄爆面积比的工况下对瓦斯爆炸传播规律及泄爆过程进行模拟,分析其变化特征和封闭泄爆效果。结果表明:S0工况条件下,压力和温度衰减后保持在0.29 MPa和565 K;S1~S4工况条件下,S4比S1,S2和S3达到封闭状态时间快780,260,50 ms,封闭时间最大节省70.91%;随着泄爆面积比的增大,封闭火区内的压力的峰值、峰值数量和达到封闭状态时间减小,泄爆能力增强;火焰速度峰值和衰减速率增大;温度的初始峰值、峰值数量和达到稳定状态时间减小,最大峰值反而增大,说明泄爆门对瓦斯爆炸火焰无抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号